Трансформаторная подстанция (ПС) — это электроустановка, предназначенная для приёма, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств.
Существует ворох документации, который следует изучить, прежде чем приступать к обслуживанию существующей, проектированию или строительству новой ПС. Мы пойдём другим путём. Мы расскажем об интересных (или не очень) моментах, на которые важно обратить внимание, а ты, дорогой читатель, погрузишься в интересующий тебя аспект самостоятельно.
По сложившейся традиции самое важное отразим в начале, в конце — можно вовсе не читать.
СОДЕРЖАНИЕ:
- Трансформаторы мощностью до 1000 кВА можно защищать предохранителями.
- При увеличении мощности ПС до 1000-6300 кВА необходима ДЗТ.
- Для масляных трансформаторов мощностью 2500 кВА и более требуется маслоприёмник.
- Классическое решение по установке трансформатора.
- При переходе с 40 на 63 МВА значительно ужесточаются требования к их установке.
- Самые распространённые высоковольтные выключатели — вакуумные и элегазовые.
- Необходимость в вольтодобавочных трансформаторах.
- Виды оперативного тока на ПС.
- Режимы нейтрали сети.
- Необходимость в компенсации ёмкостных токов.
- Силовые трансформаторы со схемой соединения Y/Yн-0 устанавливать не рекомендуется.
- За трансформатором 400 кВА и более необходима трёхуровневая система защиты.
- Не следует забывать о дополнительной огнезащите кабелей и требованиях к невозгоранию.
- Стойки УСО запрещены к новому применению на ПС Россетей.
- Разделять электроприёмники по степени надёжности очень важно.
- Для наружного освещения небольшой ПС достаточно одной мачты.
- Заземление ПС выполняется в виде правильной сетки.
- Современные решения по электромагнитной совместимости.
- Автоматизация ПС.
- Выбор оборудования и ошиновки определяется мощностью трансформатора и пропускной способностью линии.
- При установке любого оборудования на ПС должна быть обеспечена безопасность человека.
- Какую изоляцию применить на ПС: фарфоровую или полимерную?
- Молниезащита ПС.
- Ставить ли ТТНП в цепях ВЛ?
- Правильная маркировка обмоток измерительных трансформаторов.
- Определение необходимого запаса материалов.
- И напоследок, лингвистические особенности в энергетике.
ПЕРЕЧИСЛИМ ОСОБЕННОСТИ:
1. Трансформаторы мощностью до 1000 кВА можно защищать предохранителями.
Защиту трансформаторов мощностью до 1000 кВА и напряжением 6-10 кВ вполне разумно выполнять предохранителями. Это позволяет значительно сэкономить на выключателе и релейной защите, практически не ухудшая надёжность сети. В подборе предохранителей вам могут помочь каталоги производителей: по ссылкам доступны таблицы от производителей Schneider Electric⎘ и ABB⎘, ниже — они же, в виде картинок.
2. При увеличении мощности ПС до 1000-6300 кВА необходима ДЗТ.
ПУЭ говорит, что дифференциальная защита трансформатора мощностью 6,3 МВА и более обязательна, но может быть установлена уже на 1 МВА. Для последнего требуются дополнительные условия или сильное желание заказчика.
3. Для масляных трансформаторов мощностью 2500 кВА и более требуется маслоприёмник.
Современные трансформаторы на стыке номиналов 1600-2500 кВА переходят рубеж в одну тонну залитого масла, а соответственно, требуют природоохранных мероприятий на случай аварии. Если масса масла в них не превышает 20 тонн, а это 40-63 МВА, то допускается не выполнять отвод масла и не ставить маслосборник. Техническое решение для данного случая можно увидеть на картинке. Подобным же образом устанавливаются трансформаторы в помещении номиналом свыше 1000 кВА (более 600 кг масла).
4. Классическое решение по установке трансформатора.
Самым распространённым решением при размещении силовых трансформаторов является устройство маслоприёмника под ним, прокладка маслопроводов и погружение в землю маслосборника. Это решение обязательно для 20-тонных устройств, но применимо и для гораздо меньших габаритов. Всё зависит от желания заказчика и возможности размещения на плане.
5. При переходе с 40 на 63 МВА значительно ужесточаются требования к их установке.
При расстояниях менее 15 м между трансформаторами мощностью от 63 МВА должны предусматриваться огнестойкие перегородки (п.4.2.212 ПУЭ⎘). ПС такой мощности также требуется оснащать автоматическими установками пожаротушения (Приложение 4 Постановления Правительства № 1464 от 01.09.2021⎘) и пожарным водопроводом (см. СТО 34.01-27.3-002-2014⎘). На стороне 6-10 кВ уже не обойтись без токоограничивающих реакторов, так как расчётные токи КЗ переваливают отметку в 20 кА.
6. Самые распространённые высоковольтные выключатели — вакуумные и элегазовые.
Вакуумные выключатели более распространены на напряжении 6-35 кВ, элегазовые — 110 и выше. Вакуумные выключатели неидеальны при коммутациях, элегазовые — имеют огромные вопросы по экологии. Но на текущий момент такой расклад сил наблюдается в энергетике большинства стран мира... и он, несомненно, будет меняться в дальнейшем.
7. Необходимость в вольтодобавочных трансформаторах.
Самыми распространёнными местами, где может возникнуть потребность в ВДТ (он же — ЛРТ или ПАРН), являются сторона НН автотрансформатора и протяжённые линии среднего напряжения. Есть две разновидности данного оборудования: в трёхфазном и однофазном исполнении, которые применимы и для ПС, и для линий; но бюрократические процедуры не позволяют пока использовать однофазные — за АТ, а трёхфазный — оказывается экономически невыгодным в линиях.
8. Виды оперативного тока на ПС.
Существует три основных вида оперативного тока: переменный, постоянный и выпрямленный. Первый вид оправдан в случаях минимизации затрат на внедрение и обслуживание, второй — наиболее распространён на ПС, особенно в эпоху «прорыва» в аккумуляторостроении, третий — практически изжил себя и остаётся памятником прошлого в удалённых уголках страны.
9. Режимы нейтрали сети.
Самыми распространёнными в настоящий момент режимами нейтрали в отечественных сетях 0,4 и 110-750 кВ является глухозаземлённая нейтраль, в сетях 6-35 кВ — изолированная. Реже встречаются режим эффективного заземления сети 110 кВ, компенсированной и заземлённой через резистор нейтрали СН и изолированный режим НН.
И да, не устанем повторять, что изолированную нейтраль необходимо «изолировать» из нашей сети, как это сделали большинство стран, так как логика при её внедрении, конечно, была, но давно пропала.
10. Необходимость в компенсации ёмкостных токов.
Всем известно, что в сети СН могут возникать паразитные ёмкостные токи. Но везде ли они возникают и всегда ли необходимо их компенсировать индуктивным дугогасящим реактором? Расчёты показывают, что в случае разветвлённой кабельной сети необходимо устанавливать ДГР в её «голове», и, порой, устанавливать достаточно мощный ДГР. Если же все отходящие линии — воздушные, то с 99-процентной долей вероятности можно сказать, что ДГР там не нужны.
11. Силовые трансформаторы со схемой соединения Y/Yн-0 устанавливать не рекомендуется.
На то, что современные нормы не рекомендуют устанавливать данный тип трансформаторов, мы уже обращали внимание⎘. Но если такой трансформатор уже установлен или всё же планируется к установке, необходимо серьёзно подойти к вопросу его защиты от однофазного КЗ на стороне НН, правильно подобрав вводной автомат и (или) грамотно разместив трансформатор тока в нулевом проводе (п.7.14 СТО 56947007-29.240.40.263-2018⎘).
12. За трансформатором 400 кВА и более необходима трёхуровневая система защиты.
Трёхуровневая система защиты на стороне НН может быть организована следующим образом: между вводными (секционным) и отходящими аппаратами защиты устанавливаются групповые автоматические выключатели. Эти выключатели, согласно расчётам, позволяют значительно снизить сечение кабелей к маломощным потребителям, соблюдая требования к их термической стойкости и невозгоранию в условиях растущих токов КЗ на шинах 0,4 кВ.
13. Не следует забывать о дополнительной огнезащите кабелей и требованиях к невозгоранию.
Проверка кабелей на невозгорание достаточно подробно описана в Циркуляре №Ц-02-98 (Э)⎘, а его исполнение закреплено локальными нормативными документами электросетевых компаний. Требование о дополнительном покрытии современных кабелей, в т.ч. негорючих, огнезащитным составом кажется нелогичным, но оно также присутствует в СТО Россетей.
14. Стойки УСО запрещены к новому применению на ПС Россетей.
Один из пунктов Технической политики Россетей⎘ гласит, что при реконструкции, расширении и новом строительстве не рекомендуется применять под оборудование ПС железобетонные стойки типа УСО
, другой — требует применять только облегчённые предварительно-напряжённые железобетонные стойки
, а в сумме они перечёркивают большинство решений, что рождались в умах советских строителей, и предписывают использовать более надёжные, но и более дорогие, современные строительные конструкции. Например, стойки типа СОН.
15. Разделять электроприёмники по степени надёжности очень важно.
Выделяют три основные категории электроприёмников по надёжности. Все три — могут присутствовать в собственных нуждах ПС. Первая категория должна получать питание от двух независимых источников с АВР, вторая — характеризуется ручным переключением на резерв, третья — может питаться от одного источника. Только распределив электроприёмники по категориям, можно понять, какое количество кабелей питания необходимо тому или иному оборудованию, оценить способ прокладки кабелей по ОРУ и выполнить схему переключения на резервный источник. Пример правильного и неправильного решения можно найти ниже, в Случае из практики.
Есть несколько нормативов, где все возможные электроприёмники ПС уже сформированы по группам. Ищи в НТД⎘.
16. Для наружного освещения небольшой ПС достаточно одной мачты.
На небольших ПС, до 35 кВ включительно, может быть установлена одна мачта с тремя прожекторами, чего вполне достаточно для освещения рабочих поверхностей оборудования и проходов (проездов) на её территории. Но внутренние документы эксплуатирующей организации могут потребовать в дополнение к рабочему наружному освещению ПС организовать ещё охранное освещение по её периметру.
17. Заземление ПС выполняется в виде правильной сетки.
На ОРУ ПС сетку заземления стараются выполнять в виде ровных ячеек с продольными и поперечными составляющими в непосредственной близости от оборудования. Прокладываются горизонтальные заземлители на глубине 0,7-1,0 метра, вертикальные — погружаются на глубину 4-6 метров от уровня планировки. Площадь ячеек сетки заземления увеличивается от центра к внешним границам ПС. Вокруг зданий создаётся замкнутый контур, с отступом 1 метр от фундамента, внутри — формируется шина уравнивания потенциалов, прокладываемая по внешней стене. Все указанные элементы соединяются между собой и, в современных условиях, рекомендуется выполнять из оцинкованного металла, что позволяет в разы продлить срок их службы.
18. Современные решения по электромагнитной совместимости.
Помимо достаточно распространённых решений, применяемых на ОРУ 330 кВ и выше, где для снижения напряжённости электрического поля давно используются экраны между высоковольтными выключателями, над кабельными лотками и шкафами, сегодня, для обеспечения защиты МП аппаратуры от электромагнитных полей, всё чаще прокладываются шины уравнивания потенциалов в кабельных лотках и организуются локальные заземляющие устройства у рабочих мест оборудования.
19. Автоматизация ПС.
Одной из главных задач автоматизированной системы управления технологическим процессом (АСУ ТП) является переход к эксплуатации ПС без постоянного обслуживающего персонала. Выделяют несколько степеней автоматизации современных ПС: от дистанционного управления отдельными коммутационными аппаратами с щита управления ПС до выполнения комплексных переключений на ОРУ с удалённого диспетчерского пункта. Внедрение того или иного уровня автоматизации зависит от объёма реконструкции (расширения) объекта и возможностей заказчика.
20. Выбор оборудования и ошиновки определяется мощностью трансформатора и пропускной способностью линии.
Постановление Правительства РФ № 937 от 13.08.2018⎘ чётко даёт понять, что оборудование в линейной ячейке зависит от номинальных параметров присоединённой линии, а не наоборот. Так же и оборудование в цепи трансформатора напрямую зависит от мощности трансформатора, а не нагрузки... но и здесь есть свои нюансы⎘.
21. При установке любого оборудования на ПС должна быть обеспечена безопасность человека.
Если невозможно обеспечить безопасные расстояния для обслуживания электрооборудования ПС, должны быть применены ограждающие конструкции. Токоограничивающие реакторы, установленные в реакторной, трансформаторы напряжения или собственных нужд, установленные на ОРУ, либо неправильно выполненные площадки обслуживания высоковольтных выключателей могут требовать дополнительных ограждений с размещением запрещающих табличек на них.
22. Какую изоляцию применить на ПС: фарфоровую или полимерную?
Фарфоровая изоляция имеет давнюю историю, полимерная — пришла к нам относительно недавно. Каждая из них имеет свои достоинства и недостатки: фарфор менее устойчив к динамическим нагрузкам — полимер склонен к необратимым загрязнениям, фарфор неприхотлив при эксплуатации — полимер прост в изготовлении. И первая, и вторая имеют право на применение в современных подстанциях: выбор напрямую зависит от пожеланий заказчика.
23. Молниезащита ПС.
Отечественные стандарты классифицируют четыре уровня защиты от прямых ударов молнии. Зданий и сооружений, относящихся к I категории молниезащиты (надёжность прорыва молнии 0,98 и более), на площадках подстанций нет. Ко II категории относятся помещения аккумуляторных и оборудования РЗА на базе МП устройств. Прочие объекты относятся к третьей категории. Защита выполняется с помощью молниеотводов на прожекторных мачтах и ячейковых порталах, реже — отдельно стоящих молниеотводов. А количество защитных единиц определяется расчётами.
24. Ставить ли ТТНП в цепях ВЛ?
Трансформаторы тока нулевой последовательности (ТТНП) в сети с изолированной нейтралью необходимы для определения места однофазного повреждения. Долгое время ТТНП устанавливались только на кабельных присоединениях, ВЛ — игнорировались. Данную особенность мы связываем с тем, что не было технического решения этой проблемы для линейной ячейки ВЛ, а отыскание места повреждения ограничивалось отключением «здоровых» присоединений. Сегодня для установки ТТНП не делают исключений.
25. Правильная маркировка обмоток измерительных трансформаторов.
Если коэффициент трансформации ТТ может корректироваться путём изменения числа витков первичных обмоток, то при маркировке ТТ ставят «тире», например, 300-600-1200/5 А. Через дробь обозначаются ТТ, у которых коэффициент трансформации может меняться с помощью вторичных обмоток: 300/600/1200/5 А.
С ТН всё сложнее. Не ошибиться при написании напряжения вторичной обмотки (однофазного или трёхфазного ТН, ТН в сети с изолированной или заземлённой нейтралью) поможет основной стандарт на ТН (см. НТД⎘) или вырезка из него (ниже).
26. Определение необходимого запаса материалов.
Какой допустим запас на материалы при строительстве и монтаже? Сколько нужно заложить излишков, чтоб это устроило и исполнителя, и проверяющего, и заказчика? Ответ на этот вопрос кроется... в сметных сборниках.
При подсчёте длины кабеля рекомендуется округлять замеренные значения на плане в большую сторону до 8 %, для учёта неподдающегося точным замерам увеличения длины из-за прокладки «змейкой», слабины на поворотах, подъёмах, спусках и прочего. Кроме того, к подсчитанным таким путём суммарным длинам следует добавлять 2 % согласно нормам отхода кабелей (за исключением кабелей связи).
Из объёма бетона, куда погружается жёсткая арматура, следует вычитать последнюю. Объём жёсткой арматуры, в свою очередь, вычисляется делением массы металла на плотность.
Расход песка на уплотнение принимается равным 10 %, щебня — 15 %.
27. И напоследок, лингвистические особенности в энергетике.
Названия станций, подстанций и линий электропередачи по правилам пишутся без кавычек, с пробелами, по типу ПС 220 кВ Южная. Диспетчерские наименования оборудования должны присваиваться таким же образом, например 1 СШ 500 кВ. Эти требования обозначил Системный оператор ЕЭС ещё в 2014 году в ГОСТ Р 56302-2014⎘.
ВЫВОД
Замена трансформаторов в диапазонах 1-4 МВА, 6,3-40 МВА может проходить достаточно «безболезненно», но переход обозначенных рубежей может таить в себе неожиданности. Выбор той или иной схемы соединения трансформатора, того или иного оборудования должны сопровождаться обосновывающими расчётами. Но даже расчётами не всегда можно обосновать режим нейтрали сети или выбор оперативного тока ПС.
Даже кабели, не поддерживающие горение, требуют дополнительной огнезащиты, стойки УСО не спеша уходят в прошлое, а для безопасности обслуживающего персонала требуется правильное размещение оборудования и обязательное его заземление.
Выбор автоматизации современных ПС и типа изоляции оборудования целиком и полностью ложится на плечи заказчика. А запас материалов — в сфере ответственности строителя с проектировщиком. Законным образом допустимо добавлять к расчётным значениям кабеля — 10-11 %, песка — 10 %, а щебня — 15 %.
СЛУЧАЙ ИЗ ПРАКТИКИ. На ПС 500 кВ № 1 выполнена схема подключения оборудования ОРУ 500 кВ к собственным нуждам ПС по первой категории надёжности: все силовые шкафы запитаны по кольцевой схеме, переключение питания производится автоматически и может быть организовано с обеих сторон.
Приводы оборудования ОРУ 110 кВ ПС № 2 также запитаны по кольцевой схеме. Но здесь уже вторая категория надёжности, и автоматического переключения питания не произойдёт: на вводе используются ручные рубильники.
Обе ПС служат примером правильного исполнения НТД.
На ПС 110 кВ № 3, как и положено, выполнена кольцевая схема питания и кабели проложены по разным трассам. Но количество питающих кабелей «говорит» о возможности мгновенного переключения при повреждении, а технически, на рубильниках, этого реализовать невозможно. Налицо избыточное количество кабелей.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
Помимо противоречий нормативно-технической документации⎘ на пути проектировщика часто возникают проблемы, которые сложно решить в одиночку. Озвучим некоторые из них, чтоб они стали известны не одному ему, но и другим участникам процесса строительства (реконструкции), а может быть и научному сообществу.
По аналогии с предыдущей статьёй, расположим проблемы по порядку, от наиболее актуальной — к наименее важной, поясним их и дадим им оценку.
СОДЕРЖАНИЕ:
- Скудность типовых проектов.
- Сложность изложения методических указаний.
- Разделение проекта на этапы.
- Замкнутый цикл при проектировании.
- «Слабое» составление технического задания.
- Нововведения.
- Экспертиза проекта.
- Компромисс между безопасностью и удобством обслуживания.
- Расчёты.
- Определение необходимого запаса материалов.
- Взаимодействие с производителями оборудования.
- Распределение трудоёмкости проектирования на стадиях П и Р.
- Распечатка документации.
- Субъективные факторы.
ПЕРЕЧЕНЬ ПРОБЛЕМ, С КОТОРЫМИ ПРИХОДИТСЯ СТАЛКИВАТЬСЯ ПРИ ПРОЕКТИРОВАНИИ:
1. Скудность типовых проектов.
Типовые проекты позволяют значительно упростить и ускорить процесс проектирования, а также исключить серьёзные ошибки. В недавнем прошлом типовые проекты охватывали всю сферу отечественной промышленности, а в настоящий момент работа над их созданием и актуализацией ведётся лишь в избранных отраслях.
На наш взгляд, немаловажный вклад в процесс проектирования могла бы внести актуализация существующих типовых проектов, не говоря уж о создании новых.
2. Сложность изложения методических указаний.
О сложностях работы с методическими указаниями при выборе ОПН мы писали ранее⎘, но есть и другие примеры. Методические указания по определению времени насыщения трансформаторов тока при КЗ входят в их число.
Сложно уловить логику в этих документах даже опытному проектировщику.
3. Разделение проекта на этапы.
Самым распространённым случаем является разделение процесса проектирования на этапы П и Р, проектной и рабочей документации. Часто, к первому этапу добавляют ещё этап ОТР, основных технических решений. На первый взгляд, всё достаточно логично: там, где требуется рассмотрение различных вариантов, нужна стадия ОТР, в проектной документации закладываются основы, а в рабочей — идёт детальная проработка технических решений. Но! До сих пор не существует системного документа (или документов), который бы определял границы между этими стадиями, — найти можно только скудные указания к определённым разделам (например, разделам РЗА, АСУ ТП, АИИС КУЭ) в стандартах некоторых организаций.
Что мы имеем на выходе? Расчёт уставок выполняется на стадии ОТР, там же производится выбор оборудования. На стадии РД нельзя указывать конкретного производителя оборудования, но прорисовать все схемы уже в ПД необходимо.
4. Замкнутый цикл при проектировании.
Редко, когда работу по проектированию можно выполнить при параллельном (независимом) или последовательном участии исполнителей. Чаще всего работа носит цикличный характер: от принимаемых технических решений (в томах ИОС, ПЗ) зависит разделение на этапы (в томе ПОС), состав работ (ПОС) определяет стоимость строительства (сметная документация), а после смет сводятся общие экономические показатели (ПЗ) и составляется календарный график строительства (снова ПОС).
Только правильное и своевременное взаимодействие всех участников способно дать оптимальный результат.
5. «Слабое» составление технического задания.
Техническое задание без детальных требований приводит к сложностям при взаимодействии проектировщика с заказчиком, а также невозможности заранее оценить трудозатраты, что может значительно повлиять на стоимость проектирования и сроки.
Составлением технического задания на проектирование должен заниматься специалист, имеющий достаточный опыт проектирования.
6. Нововведения.
Само по себе совершенствование системы проектирования положительно сказывается на развитии энергетики. Но, сваливая на одного лишь проектировщика разработку новых продуктов, на выходе можно получить совсем не тот результат, что ожидаешь.
Перейдём к примерам:
- в последнее время широкое распространение получило понятие «информационная безопасность», но объём проектирования по нему до сих пор неясен;
- детально не проработаны такие устройства, как «анкерная линия», или «анкерные столбики», применяемые для безопасной эксплуатации оборудования;
- требования к сметной документации меняются из года в год;
- сюда же можно отнести и расчёт насыщения трансформаторов тока, упомянутый выше.
Необходима экспериментальная наладка всего нового перед внедрением в обширную практику.
7. Экспертиза проекта.
В рамках строительства, реконструкции или технического перевооружения объектов возникает необходимость проведения экспертизы. Экспертиза может быть государственной или негосударственной. Для опасных производственных объектов проводится экспертиза промышленной безопасности. Передаваться на экспертизу может комплект проектной документации со сметами и результатами инженерных изысканий, а может — только техническая часть или сметы. Разобраться в этих перипетиях очень непросто.
Решить вопрос позволяет опыт выполнения проектов-аналогов и внутренний регламент заказчика.
8. Компромисс между безопасностью и удобством обслуживания.
Кажется очевидным, что преимущество первого над вторым не вызывает сомнений. Но бывают случаи, когда всё складывается в пользу последнего, а обеспечить безопасность при этом оказывается непросто.
Пример можно увидеть на картинках. Производители высоковольтных выключателей размещают шкафы привода таким образом, что для обеспечения их безопасного обслуживания бывает сложно обойтись без ограждающих конструкций.
9. Расчёты.
При проектировании не избежать расчётов. Это могут быть расчёты фундаментов на несущую способность, расчёт токов КЗ и уставок защит, падения напряжения в цепях ТН и ещё много разнообразных вычислений. Кто-то пользуется руководящими указаниями и выполняет расчёты вручную, кто-то покупает лицензию и пользуется специализированными программами, кто вычисляет онлайн на тех или иных платформах. Но итог получается разным.
Необходима систематизация методов расчёта.
10. Определение необходимого запаса материалов.
Любой уважающий себя проектировщик делает поправку на расход материалов при монтаже. Но не всякий знает, какой «запас» допустим. Какое значение нужно добавлять к длине кабеля на плане, каким необходимо принимать расход песка и щебня, и насколько важны излишки бетона при погружении в них арматуры? Читайте в нашем следующем материале⎘.
11. Взаимодействие с производителями оборудования.
В силу определённых особенностей данная проблема может быть и не проблемой вовсе, для некоторых участников процесса проектирования. Но сложности возникают у каждого.
Ввиду того, что уже на этапе ОТР заказчик может потребовать сравнение стоимости оборудования, поставляемого разными производителями, а технические требования к этому моменту ещё не сформированы, у производителя появляется возможность пойти на хитрость и предоставить «light-версию» своего продукта, дабы выиграть конкуренцию в цене. На выходе получаем совсем не тот продукт или не ту цену продукта, что ожидали увидеть в начале.
Более прогрессивной могла бы стать взаимосвязь проектировщика с производителем через заказчика, как заинтересованной стороны, а значит способной оказать существенное влияние на переговоры.
12. Распределение трудоёмкости проектирования на стадиях П и Р.
Не секрет, что для оценки стоимости проектирования разработан такой механизм, как сметы на ПИР. В сметах на ПИР происходит распределение стоимости по этапам (проектная/ рабочая) в пропорции 40/60. Но в современных условиях усложнения процесса проектирования на первом этапе — с увеличением состава ПД, детальной проработкой технических решений и необходимостью дополнительных согласований — эта пропорция не отражает действительности.
При выполнении полного комплекса работ одним исполнителем данный вопрос неактуален, но при дифференциации этапов может оказаться, что первый из них — нерентабельный.
Необходимо комплексное реформирование системы определения стоимости проектирования, в противном случае энергетику ждёт неминуемое снижение уровня квалификации инженерного состава.
13. Распечатка документации.
Несмотря на активное развитие электронного документооборота, проектировщику до сих пор приходится отправлять печатную версию выполненного проекта заказчику, а также смежным организациям, требующим согласования. Количество же печатных версий может доходить до 7-ми.
Предлагаем отказаться от такого объёма макулатуры ради... 🤔 сохранения природы.
14. Субъективные факторы.
В заключение обратим внимание на то, что только при всестороннем погружении в проект можно получить хороший результат. Когда, помимо работы самого проектировщика, появится вовлечённость заказчика в процесс; когда уйдут бескомпромиссные требования, а своевременное предоставление исходной информации станет нормой; когда эксперт сможет аргументировать свои требования нормами, а не собственным мнением; когда замечания будут выдаваться сводом, а не «порциями», и с конкретикой, а не ссылаясь на какой-то необъятный документ, — только тогда можно говорить о своевременном и качественном выполнении работы.
ВЫВОД
Все указанные проблемы можно и нужно решать. Какие-то можно решить только на законодательном уровне, какие-то — включив находчивость и смекалку, а какие-то — изменив отношение или даже менталитет. Предупреждён — значит вооружён! О плохом — достаточно. Дальше — только хорошее, полезное и очень интересное.СЛУЧАЙ ИЗ ПРАКТИКИ. С оглядкой на п.2, провели выбор и проверку ТТ во вводных ячейках 10 кВ. Исходные условия не самые простые: большие номинальные токи и токи КЗ. Расчёт времени насыщения стали в ТТ показал необходимость применения нестандартного оборудования, с разрезным магнитопроводом. Сформировали требования, связались с производителем, получили габаритный чертёж ТТ — не умещается в габарит ячейки. Скорректировали параметры, изменив вторичный номинальный ток, — подходит габарит, но такое решение не устраивает заказчика. Вывели ТТ за пределы ячейки, установив на ОРУ, — не каждый производитель готов реализовать.
Как итог, установили на стороне 10 кВ силового трансформатора трансформатор тока номиналом 35 кВ в опорном исполнении, взамен установленных в ячейке.
Применение нового, современного, и, как следствие, более прихотливого оборудования (в данном случае — МП РЗА) влечёт за собой необходимость учёта новых факторов (у нас — перенасыщение ТТ при КЗ), способных на него негативно повлиять.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
Каждому из нас не раз приходилось сталкиваться с противоречиями, как в обычной жизни, так и в профессиональной деятельности. Иногда они нас напрямую не касаются, и мы стараемся не замечать их, но иногда на кону стоит правильность принятия решений или даже жизнь, и мы не можем обойти их стороной.
В энергетике, как и в любой сфере нашей жизни, есть много нелогичных вещей, безобидных противоречий и даже опасных для жизни правил, от которых давно пора избавиться, но этого, увы, не происходит. В этой статье постараемся осветить некоторые проблемы, с чем приходится сталкиваться по роду своей деятельности. Расположим их по порядку, от наиболее актуальной — к наименее важной (по нашему мнению), и дадим им краткие пояснения.
СОДЕРЖАНИЕ:
- Применение кабелей с изоляцией из сшитого полиэтилена в сетях среднего напряжения с изолированной нейтралью.
- Испытания силовых трансформаторов.
- Расчёт молниезащиты ПС.
- Выбор ОПН.
- Отнесение ПС к опасным производственным объектам.
- Выбор оборудования и ошиновки в цепи трансформатора.
- Расчёт объёма маслосборника.
- Длина пути утечки изоляции.
- Массовое производство и эксплуатация трансформаторов СН со схемой соединения Y/Yн-0.
- Внедрение современной системы TN-S (TN-C-S) в низковольтной сети, но отсутствие обязательных требований к организации сопутствующих мероприятий.
- Чувствительность аппаратов защиты в низковольтной сети.
- Присоединение внешней ограды ПС к общему контуру заземления.
- Допустимая степень расстройки компенсации ёмкостного тока в сети СН.
- Допустимый уровень падения (потери) напряжения.
- Ограничение применения ДГР комбинированного исполнения.
- Контур заземления ПС необходимо выполнять из чёрного или оцинкованного металла?
- Прокладка кабелей по территории ПС.
- Допустимые расстояния между контрольными и силовыми кабелями.
- Цвет окраски заземляющих проводников.
- Понятия «среднее напряжение» и «высокое напряжение».
- Как правильно обозначать: 220/380 В или 230/400 В?
- Прочие противоречия.
ВОТ НАШ РЕЙТИНГ ПРОТИВОРЕЧИЙ:
1. Применение кабелей с изоляцией из сшитого полиэтилена в сетях среднего напряжения с изолированной нейтралью.
Под цифрами 3, 4, 5, 9, 11 на рисунке значится материал полиэтилен. Сами по себе, кабели из этого материала не представляют никакой угрозы и применяются повсеместно во многих странах мира, но только режим работы сети за рубежом иной. Оптимальным режимом работы данного типа кабеля (в сетях 6-35 кВ) может быть режим заземления сети через резистор, где предполагается отключение однофазных замыканий на землю, но никак не режим длительной работы оборудования при замыкании. Изоляция кабеля не способна к самовосстановлению, в отличие от бумажно-масляной, отсюда и противоречие.
Может быть, пора перенять зарубежный опыт?
2. Испытания силовых трансформаторов.
Согласно документу [1] есть несколько способов определения стойкости трансформаторов к ударным токам КЗ при производстве. В частности, все трансформаторы мощностью до 40 МВА должны проходить испытания или сравниваться с прошедшим испытание прототипом. Но производители не следуют этим правилам, так как для этого не созданы соответствующие условия в стране.
В России, как известно, правила создаются, чтобы их нарушать.
3. Расчёт молниезащиты подстанции (ПС).
В настоящий момент для расчёта молниезащиты объектов энергетики используется как минимум два документа, имеющих равный статус: [2] и [3]. Методики — разные, уровень защиты объектов принимается разный и итоговые значения, соответственно, получаются тоже разными.
Вывод один: мы ещё не научились предугадывать поведение молнии!
4. Выбор ограничителей перенапряжений.
Есть несколько хороших документов (например, [4], [5], [6], [7]), разобравшись в которых, можно правильно подобрать ОПН. Основная проблема этих документов в том, что применить их на практике достаточно непросто, так как написаны они сложным языком и имеют ошибки в расчётах.
Часто в работе приходится отказываться от некоторых излишних понятий (например, «номинальное напряжение ОПН», которое не имеет ничего общего с номинальным напряжением сети), пользоваться директивными письмами (о необходимости завышения наибольшего длительно допустимого напряжения ОПН для исключения ложных срабатываний) и обходить стороной такие расчёты, как «определение защитного уровня ОПН при коммутационных перенапряжениях».
5. Отнесение ПС к опасным производственным объектам.
Федеральный закон [8] говорит, что объекты электросетевого хозяйства к опасным производственным объектам не относятся, а Градостроительный кодекс [9] гласит, что линии электропередачи и иные объекты электросетевого хозяйства напряжением 330 киловольт и более — особо опасны. От этого, казалось бы, небольшого противоречия зависит необходимость проведения экспертизы промышленной безопасности, государственной или негосударственной экспертизы проекта.
В данном вопросе статус документа не играет решающей роли, и приходится руководствоваться — вторым.
6. Выбор оборудования и ошиновки в цепи трансформатора.
То, что выбирать оборудование на ПС необходимо, отталкиваясь от мощности трансформаторов и пропускной способности присоединённой линии (п.125 [10]), вопросов не вызывает. Возникает вопрос: нужен ли запас? Нормы Россетей [11] требует выбирать оборудование и ошиновку в цепи, а также фундамент трансформатора с расчётом на перспективу, для следующего по шкале мощности. Большинство же других документов по данной тематике об этом умалчивают.
На наш взгляд, этот вопрос крайне важен и требует серьёзной дискуссии. Так запас фундамента может значительно сэкономить время на реконструкцию ПС в дальнейшем, при резком увеличении нагрузки сети. А ошиновка и выключатель в цепи легко меняются при замене самого трансформатора, запас же, наоборот, может оказаться серьёзной головной болью. Попробуйте, например, выбрать на перспективу ошиновку и оборудование в цепи НН автотрансформатора мощностью 125 МВА. И про реакторы не забудьте!
7. Расчёт объёма маслосборника.
Маслосборник на ПС устанавливается для приёма масла, вытекающего из маслонаполненного оборудования, чаще всего трансформаторов, в случае возникновения аварии. Их установка позволяет избежать катастрофичных последствий на ПС.
Противоречие же в следующем. При замене (установке) трансформаторов большой мощности возникает необходимость расчёта ёмкости маслосборника. ПУЭ [12] требует, помимо объёма масла, учитывать 80%-й расход воды на пожаротушение, а в СТО [11] это значение гораздо меньше и составляет всего 20%.
Ввиду того, что объём стекающей воды может в разы превышать объём масла трансформатора, эти две цифры очень сильно влияют на принимаемые технические решения при проектировании. Предлагаем не следовать требованиям первого документа, как архаичного: итог, полученный по нему, предполагает сбор воды, а не масла.
8. Длина пути утечки изоляции.
Длина пути утечки — это самый главный показатель изоляторов. Это показатель фактического расстояния по поверхности детали между металлическими частями разного потенциала. Его можно определить с помощью нескольких документов (ПУЭ [12], [13], [14], [15], [16]). Удельные значения (см/кВ), обозначенные в этих документах, разнятся, а величина напряжения, используемая при расчётах, может быть как номинальной, так и наибольшей рабочей. По итогу — получаем различные значения.
Стандарты Россетей выглядят предпочтительнее и в данном случае.
9. Массовое производство и эксплуатация трансформаторов СН со схемой соединения Y/Yн-0.
Многие документы не рекомендуют применение таких трансформаторов (в частности, Техполитика Россетей [17]), а расчёты показывают⎘ слабую чувствительность защиты при однофазных замыканиях за ними. Но они продолжают выпускаться и внедряться в отечественную энергетику.
Обоснованием применения этих трансформаторов может служить лишь простота их изготовления и относительно низкая стоимость. На другой чаше весов — надёжность сети и безопасность персонала.
10. Внедрение современной системы TN-S (TN-C-S) в низковольтной сети, но отсутствие обязательных требований к организации сопутствующих мероприятий.
В частности, такими мероприятиями, в том числе на ПС, должны быть:
- повсеместная установка УЗО, за исключением мест, где их срабатывание может привести к опасным ситуациям;
- обязательный разрыв рабочего ноля в коммутационных аппаратах (с установкой двух- и четырёхполюсных автоматов);
- изменение методик расчёта токов КЗ в такой сети (например, актуализация ГОСТ [18]).
Первое и второе мероприятие имеют обширную практику за рубежом и позволяют сделать электрическую сеть более безопасной. Третий вопрос поднимался⎘ известными учёными давно, но не решён и по сей день.
11. Чувствительность аппаратов защиты в низковольтной сети.
Про неоднозначность позиции НТД к значению чувствительности защит мы упоминали в одной из предыдущих статей⎘. Если кратко, то ПТЭЭП [19] считают достаточным значение 1,1, ГОСТ [20] — 1,2.
Мы рекомендуем ориентироваться на 1,25-1,4, в зависимости от номинала аппарата защиты.
12. Присоединение внешней ограды ПС к общему контуру заземления.
Глава 1.7 ПУЭ [12] не рекомендует присоединять внешнюю ограду электроустановок к заземляющему устройству ПС, а регламентирует монтаж отдельного контура. Нормы Россетей (например, [21]), наоборот, считают предпочтительным присоединение ограды к контуру заземления ПС, и допускают не объединять контуры, если на ограде нет электроприёмников.
Последнее в современных условиях оказывается маловероятным, так как на ограждении могут присутствовать и электромагнитные замки, и осветительные приборы, и система видеонаблюдения. А разделение контуров может привести к опасному выносу потенциалов.
13. Допустимая степень расстройки компенсации ёмкостного тока в сети СН.
Действующие Правила [22] и РД [23] допускают расстройку ДГР до 5%, а нормы Россетей (в том числе [24]) ужесточают эти требования до 1%.
Приходится сопоставлять объекты как относящиеся или не относящиеся к Россетям.
14. Допустимый уровень падения (потери) напряжения.
Согласно недействующему уже ГОСТ [25] нормально допустимые и предельно допустимые значения установившегося отклонения напряжения на выводах приёмников электрической энергии равны соответственно +/-5 и +/-10% от номинального напряжения электрической сети. Согласно относительно новому ГОСТ [26] положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю. Противоречия могло бы и не быть, если в других действующих нормативах, таких как [27] и [28], не остались старые формулировки, а в [10] не появилось что-то среднее: «напряжение в точке технологического присоединения к электрической сети электроустановок потребителя электрической энергии может длительно изменяться в диапазоне нормально допустимых (±5 процентов) и предельно допустимых значений (±10 процентов) от номинального фазного напряжения».
Большинство продолжает считать по старинке.
15. Ограничение применения ДГР комбинированного исполнения.
ДГР комбинированного исполнения — это реактор с фильтром нулевой последовательности в едином корпусе. Их ограничение напрямую не прописано отечественными стандартами, но косвенно его можно найти в РД [23]. Там говорится о порядке вывода в ремонт оборудования, который невозможно соблюсти в данном исполнении оборудования.
Проблема сейчас не настолько и актуальна, потому что отечественные производители такое оборудование не производят.
16. Контур заземления ПС необходимо выполнять из чёрного или оцинкованного металла?
Если руководствоваться ПУЭ [12] и Циркуляром [29], то проложенные в земле заземляющие электроды могут быть выполнены из чёрной стали, оцинкованной стали и меди. В ГОСТ [30] из перечня допустимых чёрная сталь исключена.
Значит ли это, что использование неоцинкованной стали сейчас запрещено? Однозначно — нет! Но можно предположить, что идёт тенденция отказа от прокладки чёрного металла в земле, в угоду более долговечным материалам.
17. Прокладка кабелей по территории ПС.
СТО [11] говорит о том, что кабели могут быть проложены в земле (траншее), в кабельных сооружениях (туннелях, галереях, эстакадах) и трубных переходах. А Техполитика Россетей [17] запрещает прокладку КЛ в траншее по территории ПС 35 кВ и выше. Внутренние стандарты одной организации противоречат друг другу!
Приходится применять индивидуальный подход.
18. Допустимые расстояния между контрольными и силовыми кабелями.
В соответствии с табл. 2.3.1 ПУЭ [12] расстояние между этими кабелями должно быть не менее 100 мм, но п.2.3.120 также допускает прокладывать их рядом друг с другом. Документы Россетей [11] и [31] рекомендуют увеличивать эти расстояния до 0,25-0,6 м, в зависимости от вероятного тока КЗ в них.
И в данном случае игнорируем требования ПУЭ [12].
19. Цвет окраски заземляющих проводников.
Действующие ПТЭЭП [19] гласят, что открыто проложенные заземляющие проводники должны быть окрашены в чёрный цвет. А ПУЭ [12] и современные ГОСТы твердят о чередующихся продольных или поперечных полосах жёлтого и зелёного цветов.
Признаем, что чёрный цвет окраски в современных нормах — это уже атавизм, который достался нам в наследство. А жёлто-зелёный окрас — это правило, которому нужно следовать в современных реалиях.
20. Понятия «среднее напряжение» и «высокое напряжение».
Понятие среднего напряжения (СН), находящее своё отражение в большом объёме зарубежной и отечественной литературы, нашло своё определение только в 2013 году, в ГОСТ [26]. Там оно обозначено как «напряжение, номинальное среднеквадратическое значение которого превышает 1 кВ, но не превышает 35 кВ». Там же дано определение высокому напряжению (ВН), как «напряжение, номинальное среднеквадратическое значение которого превышает 35 кВ, но не превышает 220 кВ». Последнее несомненно вызывает вопросы, так как раньше высоким напряжением считалось напряжение выше 1000 В, а среднего — вообще не существовало.
В терминологии МЭК тоже не существует чёткой границы СН и ВН: она лежит в диапазоне от 30 до 100 кВ. Однако, в МЭК термин среднего напряжения обычно используется для распределительных сетей от 1 кВ до 52 кВ. Как трактовать напряжение 330 кВ и выше, догадайтесь сами!
21. Как правильно обозначать: 220/380 В или 230/400 В?
По сохранившейся традиции и в соответствии с ГОСТ [26] в электрических сетях низкого напряжения стандартное номинальное напряжение электропитания равно 220 В (между фазным и нейтральным проводниками для однофазных и четырёхпроводных трёхфазных систем) и 380 В (между фазными проводниками для трёх‑ и четырёхпроводных трёхфазных систем). Но другой переведённый отечественный стандарт, ГОСТ [32], трактует по-иному и даже даёт пояснения, что значение 230/400 В является результатом эволюции систем 220/380 В и 240/415 В, которые завершили использование в Европе и во многих других странах мира.
Остаётся верить последнему.
22. В заключение затронем ещё несколько противоречий, которые имеют место быть, но не оказывают значительного влияния на технические решения, принимаемые в проекте.
К ним можно отнести:
- Формулировки «падение» или «потери» напряжения. В ГОСТ [26] и ГОСТ [33] используется формулировка «падение напряжения», в большинстве других стандартов и методиках звучит «потери», но подразумевают они одно и то же.
- Изображение выкатных выключателей на электрической схеме. Большинство документов изображают стрелки в одну сторону, а ГОСТ [34] рисует — в другую.
- Изображение ТТ на схемах. Постаревший ГОСТ [35] чётко разделяет изображения на схемах (катушек индуктивности, дросселей, трансформаторов и пр.) по форме I и форме II, предполагая, что можно использовать либо одну, либо другую формы, но большинство документов и исполнителей умудряются совмещать их на одном чертеже, изображая силовой трансформатор в первом виде, а измерительный — во втором.
- Вентильные разрядники. Их установка на ПС давно запрещена, а в ПУЭ [12] целая глава о них, и при определении допустимых расстояний до сих пор приходится пользоваться ей.
- Заполнение маслоприёмника щебнем. ПУЭ [12] требует размер щебня от 30 до 70 мм, а ГОСТ [36] классифицирует щебень по фракциям 20-40 и 40-80 мм.
- Проверка кабелей на невозгорание. Документ [37] с методикой расчёта есть, обоснование его внедрения есть, но однозначных требований к его исполнению до сих пор нет.
ВЫВОД
Когда-нибудь часть вопросов обязательно снимется, другая часть, наверное, не будет решена ещё долго. О ней будут говорить, спорить, но решения так и не будет. Постараемся держать на контроле решение всех этих вопросов, и когда наберётся достаточный объем информации по ним, обязательно осветим их на нашей платформе.ССЫЛОЧНАЯ ЛИТЕРАТУРА:
- ГОСТ Р 52719-2007 Трансформаторы силовые. Общие технические условия⎘.
- РД 34.21.122-87 Инструкция по устройству молниезащиты зданий и сооружений⎘.
- СО 153-34.21.122-2003 Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций⎘.
- ГОСТ Р 52725-2021 Ограничители перенапряжений нелинейные для электроустановок переменного тока напряжением от 3 до 750 кВ. Общие технические условия⎘.
- ГОСТ Р 53735.5-2009 Разрядники вентильные и ограничители перенапряжений нелинейные для электроустановок переменного тока на напряжение от 3 до 750 кВ. Рекомендации по выбору и применению⎘.
- Методические указания по применению ограничителей перенапряжений нелинейных в электрических сетях 6-35 кВ. 2001⎘.
- Методические указания по применению ограничителей в электрических сетях 110-750 кВ. 2000⎘.
- Федеральный закон от 21.07.1997 № 116-ФЗ «О промышленной безопасности опасных производственных объектов»⎘.
- Градостроительный кодекс Российской Федерации⎘.
- Постановление Правительства РФ № 937 от 13.08.2018 «Об утверждении Правил технологического функционирования электроэнергетических систем и о внесении изменений в некоторые акты Правительства Российской Федерации»⎘.
- СТО 34.01-21.1-001-2017 Распределительные электрические сети напряжением 0,4-110 кВ.Требования к технологическому проектированию⎘.
- Правила устройства электроустановок. Издание 6, 7⎘.
- РД 34.51.101-90 Инструкция по выбору изоляции электроустановок⎘.
- СТО 56947007-29.240.059-2010 Инструкция по выбору изоляции электроустановок⎘.
- СТО 56947007-29.240.068-2011 Длина пути утечки внешней изоляции электроустановок переменного тока классов напряжения 6-750 кВ⎘.
- ГОСТ 9920-89 Электроустановки переменного тока на напряжение от 3 до 750 кВ. Длина пути утечки внешней изоляции⎘.
- Положение ПАО «Россети» «О единой технической политике в электросетевом комплексе». 2019⎘.
- ГОСТ 28249-93 Короткие замыкания в электроустановках. Методы расчёта в электроустановках переменного тока напряжением до 1 кВ⎘.
- Правила технической эксплуатации электроустановок потребителей. 2003⎘.
- ГОСТ Р 50030.2-2010 Аппаратура распределения и управления низковольтная. Автоматические выключатели⎘.
- СТО 56947007-29.130.15.114-2012 Руководящие указания по проектированию заземляющих устройств подстанций напряжением 6-750 кВ⎘.
- Правила технической эксплуатации электрических станций и сетей Российской Федерации. 2003⎘.
- РД 34.20.179 Типовая инструкция по компенсации ёмкостного тока замыкания на землю в электрических сетях 6-35 кВ. 1987⎘.
- СТО 34.01-3.2-008-2017 Реакторы заземляющие дугогасящие 6-35 кВ. Общие технические требования⎘.
- ГОСТ 13109-97 Нормы качества электрической энергии в системах электроснабжения общего назначения (неактуал.).
- ГОСТ 32144-2013 Нормы качества электрической энергии в системах электроснабжения общего назначения⎘.
- СП 256.1325800.2016 (актуал. СП 31-110-2003) Электроустановки жилых и общественных зданий. Правила проектирования и монтажа⎘.
- РД 34.20.185-94 Инструкция по проектированию городских электрических сетей⎘.
- Технический циркуляр № 11/2006 от 16.10.2006 «О заземляющих электродах и заземляющих проводниках»⎘.
- ГОСТ Р50571.5.54-2013 Электроустановки низковольтные. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов⎘.
- СТО 56947007-29.240.044-2010 Методические указания по обеспечению электромагнитной совместимости на объектах электросетевого хозяйства⎘.
- ГОСТ 29322-2014 Напряжения стандартные⎘.
- ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Выбор и монтаж электрооборудования. Электропроводки⎘.
- ГОСТ 21.613-2014 СПДС. Правила выполнения рабочей документации силового электрооборудования⎘.
- ГОСТ 2.723-68 ЕСКД. Обозначения условные графические в схемах⎘.
- ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ.
- Циркуляр №Ц-02-98(Э) от 16.03.98 «О проверке кабелей на невозгорание при воздействии тока короткого замыкания»⎘.
- СТО 34.01-27.3-002-2014 Проектирование противопожарной защиты объектов электросетевого комплекса ОАО «Россети». Общие технические требования⎘.
СЛУЧАЙ ИЗ ПРАКТИКИ. В проекте выполнен расчёт объёма маслосборника в полном соответствии с методиками Россетей [11] и [38]. Значение интенсивности подачи воды принято 0,2 л/с‧м2. На основе этого значения рассчитано суммарное количество воды, вылитое на трансформатор при тушении, что, в сумме с его собственным количеством масла, дало необходимый объём ёмкости.
Эксперт государственной экспертизы дал замечание к расчёту. За исходные данные к расчёту указал
принять пять пожарных стволов, направленных на разные стороны бака. Зная максимальную интенсивность
брандспойтов, определяем суммарное количество вылитой воды. На вопрос почему именно пять?
получили ответ
я так решил
.
Как итог: вместо того, чтобы в качестве исходных данных взять цифру, закреплённую нормативным документом [38], пришлось брать значение, взятое из головы эксперта.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
Вот мы и подошли к флагманам в мире автоматических выключателей (АВ).
Если Вы уже разобрались с тем, как выбирается АВ⎘, поняли, что модульный автомат⎘ Вам не подходит, а блочный автомат с термомагнитным расцепителем⎘ не обеспечивает нужную чувствительность и (или) селективность, АВ с электронным расцепителем – это именно то, что Вам нужно.
АВ с электронным расцепителем – это автомат блочного типа, снабжённый микропроцессорным (электронным) блоком защиты. Представителями данного класса являются АВ в литом корпусе и воздушные АВ.
ЭТИ АВТОМАТЫ ОБЛАДАЮТ ВСЕМИ ТЕМИ ЖЕ ПРЕИМУЩЕСТВАМИ, ЧТО И АВТОМАТЫ БЛОЧНОГО ТИПА⎘. ИМ ХАРАКТЕРНЫ:
1) стойкость к большим токам короткого замыкания (КЗ);
2) способность пропускания и коммутации больших нагрузок;
3) возможность комплектации дополнительными блоками (контактами сигнализации срабатывания, вспомогательными контактами, независимым расцепителем, расцепителем минимального напряжения и пр.);
4) возможность оборудования электродвигательным приводом;
5) ремонтопригодность;
6) стационарное, втычное и выдвижное исполнение.
ПОМИМО УКАЗАННЫХ ОСОБЕННОСТЕЙ НЕСОМНЕННЫМИ ПРЕИМУЩЕСТВАМИ ДАННОГО ПРОДУКТА ТАКЖЕ ЯВЛЯЮТСЯ:
1) точность срабатывания защиты;
2) широкий диапазон регулировок;
3) универсальность.
Характеристика срабатывания уже «не пляшет» от минимального значения к максимальному – её погрешность сведена к минимуму. Это можно увидеть на заводских время-токовых характеристиках автоматов.
Широкий диапазон регулировок поможет легко соблюсти чувствительность аппарата к токам короткого замыкания, а также согласовать защиты с выше- и нижестоящими аппаратами защиты. Отсюда пошло второе его название – «селективный».
Универсальность же вытекает из предыдущего пункта и позволит установить аппарат, как у конечного потребителя, так и на вводе электроустановки.
НО ЕСТЬ И НЕДОСТАТКИ У АВТОМАТОВ С ЭЛЕКТРОННЫМ РАСЦЕПИТЕЛЕМ:
1) сложность настроек;
2) стоимость.
Необходимость настройки усложняет быстрый и правильный ввод аппарата в работу, а (зачастую) неинформативное отражение регулировок может не позволить правильно оценить значения выставленных уставок.
Стоимость некоторых представителей данного класса может оказаться в разы выше конкурентов, поэтому не помешает её сравнить.
По аналогии с предыдущими выпусками всю информацию по АВ с электронным расцепителем сведём в таблицы. Набор функций и характеристик, указанный в таблицах, представлен в каталогах производителей. Этой информации достаточно для правильного заказа автоматов у поставщиков. В скобках указаны возможные варианты для заказа. Например, если исключить параметры, заключённые в скобки, получим автомат, отвечающий минимальным требованиям. Стоимость указана в рублях, в ценах 2019 года с сайтов крупных поставщиков. Взаимозаменяемые аппараты (с идентичными или схожими характеристиками) выделены одинаковым цветом – для наглядности.
ПОЛНАЯ ИНФОРМАЦИЯ ДОСТУПНА ДЛЯ СКАЧИВАНИЯ
1.1 Отечественные АВ в литом корпусе с электронным расцепителем↩
1.2 Зарубежные АВ в литом корпусе с электронным расцепителем↩
2.1 Отечественные воздушные АВ↩
2.2 Зарубежные воздушные АВ↩
ВЫВОД. Автоматы с электронным расцепителем настолько интересны и многообразны, что, разобравшись в их устройстве, не хочется работать ни с какими другими низковольтными аппаратами защиты. Представленная серия статей своей основной целью ставит направление читателя на логичный, правильный подход к выбору аппаратов, подход «от простого – к сложному», от модульного – к электронному, а не от доступного – к удобному.
Никакие внешние факторы не могут исключить многообразие представленной продукции. Надеемся, что собранная здесь информация поможет объективнее подойти к правильному выбору аппарата защиты.
СЛУЧАЙ ИЗ ПРАКТИКИ. Очень часто на реконструированных подстанциях можно увидеть массовое внедрение АВ с электронным расцепителем. Большинство из них имеют загрублённую селективную отсечку (Isd=10xIr) и выведенную из работы отстройку по времени (tsd=0).
В таких случаях возникает вопрос целесообразности применения данных АВ, если, заменив их автоматами без регулировок, можно добиться того же эффекта, значительно сэкономив бюджет. Налицо посредственное отношение специалистов при выборе автоматов, либо глупая унификация всего электрооборудования.
Кстати, заводы-изготовители после испытаний и проверки своих аппаратов выставляют уставки на них не «абы как», а с определённой логикой. Это позволяет исключить неправильную работу автомата при подобном некомпетентном обслуживании.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
В предыдущей статье⎘ мы разобрали модульный автоматический выключатель (АВ). Следующим этапом представляем Вашему вниманию блочный АВ.
Блочные АВ представляют собой более громоздкие устройства (относительно модульных), из которых выделяют АВ в литом корпусе и воздушные АВ.
Порядок действий при выборе и проверке блочных АВ остаётся тем же⎘. А каковы главные особенности АВ блочного типа, где находят им применение, и насколько велик их выбор – попытаемся решить в настоящей статье.
ВЫДЕЛЯЮТ НЕСКОЛЬКО ОСОБЕННОСТЕЙ (ПРЕИМУЩЕСТВ) У АВТОМАТОВ БЛОЧНОГО ТИПА:
1) стойкость к большим токам короткого замыкания (КЗ);
2) способность пропускания и коммутации больших нагрузок;
3) возможность комплектации дополнительными блоками (контактами сигнализации срабатывания, вспомогательными контактами, независимым расцепителем, расцепителем минимального напряжения и др.);
4) возможность оборудования электродвигательным приводом;
5) ремонтопригодность;
6) помимо стационарного – применение втычного и выдвижного исполнения.
Стойкость к большим токам КЗ зачастую необходима при установке в НКУ, ГРЩ, ВРУ, ЩСН административных и жилых зданий и подстанций: там, где аварийные токи могут превышать 10 кА и подавляющее большинство модульных автоматов не пройдёт проверку на коммутационную способность.
Номинальные токи блочных выключателей начинаются от 100 А и выше, с возможностью регулировок от 40 (иногда 16) А.
Установка дополнительных блоков в АВ позволяет без изменения их габаритов создавать современный, удобный в обслуживании пункт питания низковольтного оборудования с возможностью дистанционного управления.
С помощью электродвигательного привода выключателей можно реализовывать схему АВР без включения в цепь контакторов.
Возможность ремонта устройств позволяет продлить срок их эксплуатации без замены.
ВЫДВИЖНОЕ (ВТЫЧНОЕ) ИСПОЛНЕНИЕ КАЧЕСТВЕННО ОТЛИЧАЕТСЯ СЛЕДУЮЩИМ:
1) быстрая возможность замены аппарата на резервный, того же типа, что очень важно для ответственных потребителей;
2) вывод аппарата в ремонт, добавление или замена дополнительных блоков в безопасных условиях при наличии напряжения на шинах;
3) контрольное (тестовое) положение выключателей позволяет проверить его работоспособность и правильность схемы управления без включения нагрузки (необходимо при питании потребителей, включение которых в режиме опробования недопустимо – например, насосы, станки).
ПОМИМО ПРЕИМУЩЕСТВ У БЛОЧНЫХ АВТОМАТОВ ИМЕЮТСЯ СЛЕДУЮЩИЕ НЕДОСТАТКИ:
1) габаритные размеры;
2) цена;
3) механический износ контактов (низкая износостойкость).
Так мы рассмотрели особенности автоматов блочного типа и возможности их применения, а теперь рассмотрим их разновидности.
ЭТО АВТОМАТЫ:
1) с нерегулируемой(-ми) защитой(-ми) (термомагнитным расцепителем, назовём их автоматами первого класса);
2) с регулируемой тепловой защитой Ir и нерегулируемой мгновенной токовой отсечкой (ТО) Im (термомагнитным расцепителем, автомат второго класса);
3) с регулируемыми тепловой защитой Ir и мгновенной ТО Im (термомагнитным расцепителем, автомат третьего класса);
4) с регулируемыми тепловой защитой Ir, селективной Isd и мгновенной Ii ТО (электронным расцепителем, автомат четвёртого класса).
Если защищаемая линия короткая, либо её сечение велико и ток короткого замыкания в конце оказывается достаточно большим (более 10-кратной токовой отсечки выбираемого автомата), то вполне достаточной оказывается установка АВ первого или второго класса. АВ первого класса не регулируется, а второго – допускает лишь небольшую настройку тепловой защиты (0,8..1∙In, некоторые 0,63..1∙In).
Почти все АВ первого и второго класса имеют 10-кратную отсечку, что исключает их применение в протяжённых линиях с малыми токами короткого замыкания, когда необходима отсечка, лишь в 5-8 раз превышающая ток нагрузки. В данном случае выручит автомат третьего класса, с регулируемыми защитами.
Если и третий вариант не позволяет правильно настроить защиты, то необходим АВ с электронным расцепителем (четвёртого класса). Он имеет больший диапазон регулировок и помимо соблюдения чувствительности поможет всецело согласовать защиты с выше- и нижестоящими аппаратами защиты. Отсюда пошло второе его название – «селективный». Автоматы с электронным расцепителем рассматриваются в следующей статье⎘.
По аналогии с предыдущим выпуском всю информацию по блочным АВ первого – третьего класса сведём в таблицы. Набор функций и характеристик, указанный в таблицах, представлен в каталогах производителей. Этой информации достаточно для правильного заказа автоматов у поставщиков. В скобках указаны возможные варианты для заказа. Например, если исключить параметры, заключённые в скобки, получим автомат, отвечающий минимальным требованиям. Стоимость указана в рублях, в ценах 2019 года с сайтов крупных поставщиков. Взаимозаменяемые аппараты (с идентичными или схожими характеристиками) выделены одинаковым цветом – для наглядности.
ПОЛНАЯ ИНФОРМАЦИЯ ДОСТУПНА ДЛЯ СКАЧИВАНИЯ
1.1 Отечественные АВ с нерегулируемыми защитами↩
1.2 Зарубежные АВ с нерегулируемыми защитами↩
2.1 Отечественные АВ с регулируемой тепловой защитой и нерегулируемой мгновенной ТО↩
2.2 Зарубежные АВ с регулируемой тепловой защитой и нерегулируемой мгновенной ТО↩
3.1 Отечественные АВ с регулируемыми тепловой защитой и мгновенной ТО↩
3.2 Зарубежные АВ с регулируемыми тепловой защитой и мгновенной ТО↩
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
Как выбрать автоматический выключатель и проверить правильность его установки мы рассмотрели в предыдущей статье⎘. Далее попытаемся свести воедино всё разнообразие представленной номенклатуры на рынке, систематизировать её, тем самым показав отличия того или иного варианта.
Представляем вашему вниманию модульный автоматический выключатель (АВ).
Модульный АВ – это наипростейший неразборный нерегулируемый АВ, предназначенный чаще всего для бытового использовании, устанавливаемый на DIN-рейку в щитках или шкафах. Этот прибор может дополнительно комплектоваться устройствами, способными улучшить его функциональность (дополнительные блок-контакты, реле напряжения, независимый расцепитель и пр.), но только за счёт увеличения своих габаритов, занимая дополнительные места в шкафу.
Пойдём от простого к сложному: от модульных АВ к блочным АВ с электронным расцепителем, потому что именно так, по нашему мнению, должен поступать потребитель, выбирая себе нужный продукт. Если при сравнении и проверке какая-то из особенностей или функций аппарата не удовлетворяет запросы потребителя, необходимо переходить к следующему аппарату, стоящему на ступень выше. Только так можно подобрать необходимое, значительно сэкономив бюджет. Вопрос надёжности того или иного АВ в настоящих статьях не рассматривается, так как это очень субъективный фактор, на оценку которого требуется длительное время. Про возможный контрафакт продукции есть много информации в интернете – также не касаемся этого вопроса в наших статьях.
Итак, всю информацию сведём в таблицы. Набор функций и характеристик, указанный в таблицах, представлен в каталогах производителей. Он наиболее полно отражает оценочную картину, а также достаточен для правильного заказа автоматов у поставщиков. В скобках указаны возможные варианты для заказа. Например, если исключить параметры, заключённые в скобки, получим автомат, отвечающий минимальным требованиям. Стоимость указана в рублях, в ценах 2019 года с сайтов крупных поставщиков. Взаимозаменяемые аппараты (с идентичными или схожими характеристиками) выделены одинаковым цветом – для наглядности.
ПОЛНАЯ ИНФОРМАЦИЯ ДОСТУПНА ДЛЯ СКАЧИВАНИЯ
ВЫВОД. Для того, чтобы правильно подойти к вопросу, недостаточно знать как выбрать АВ⎘ – нужно ещё знать из чего выбрать. Очень сложно бывает разобраться в каталогах производителей самому, поэтому мы попытались помочь Вам в этом вопросе, собрав всю необходимую информацию воедино.
Ввиду того, что логистика в настоящий момент нарушена, указанная стоимость АВ может значительно отличаться от представленного в таблицах (а может и вовсе отсутствовать) и объективному сравнению не поддаётся: цена указана лишь для количественного сравнения того или иного продукта.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
Зачастую потребитель, не зная многообразие выбора низковольтной отечественной и зарубежной аппаратуры, выбирает наиболее распространённый, разрекламированный продукт с доступной информацией. Другие же производители, не имеющие ярких буклетов, но обладающие тем же набором функций и не уступающие им по качеству, остаются в стороне.
Одним из таких продуктов является автоматический выключатель (АВ). Как выбрать АВ, каковы их главные особенности, где находят им применение и насколько велик их выбор – эти и другие вопросы попытаемся решить в ближайшей серии статей.
СОДЕРЖАНИЕ:
Автоматический выключатель – это контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение заданного времени и отключать токи при оговоренных аномальных условиях в цепи, например короткого замыкания (КЗ).
Существует несколько разновидностей АВ. Если идти от простого к сложному, то выделяют: модульные АВ, АВ в литом корпусе, воздушные АВ. Последние два типа можно объединить в одну группу, АВ блочного типа, так как они оба могут комплектоваться дополнительными блоками и имеют схожий функционал, но об этом подробнее в других статьях. Здесь же мы постараемся осветить главные критерии выбора АВ любого из представленных типов со ссылками на нормативно-технические документы.
ПОРЯДОК ВЫБОРА И ПРОВЕРКИ АВТОМАТА:
1) Определение нагрузки потребителей.
Определение суммарной нагрузки потребителей (Sпотр, Вт), питаемых через АВ.
2) Определение расчётного тока.
Определение расчётного тока с учётом поправочных коэффициентов (одновременности Ко, использования Ки и спроса Кс)
Iрасч = Ko∙Sпотр/Uф, А.
Как определить значения этих коэффициентов, подробно описано, в частности, в СП-31-110 «Проектирование и монтаж электроустановок жилых и общественных зданий»⎘, техническом циркуляре ВНИГМ Тяжпромэлектропроект №359-92 «Указания по расчёту электрических нагрузок»⎘ и «Руководстве по устройству электроустановок. Шнейдер Электрик. 2019»⎘. Максимальное значение этих коэффициентов равно единице.
3) Отстройка тепловой защиты.
Отстройка тепловой защиты (номинала АВ Iном.АВ, А) от расчетного тока Iрасч – путем увеличения полученного значения на 10-30%.
Конечный «процент» зависит от характера нагрузки и обозначается коэффициентом надёжности Кн. Его значение можно определить по табл. 8.6 Кабышев, Обухов «Расчет и проектирование систем электроснабжения объектов и установок. 2006»⎘.
Например, для ламп накаливания можно принять Кн = 1, для группы потребителей – 1,1, а для светильников с лампами ДЛР – 1,3
Iном.АВ = 1..1,3∙Iрасч, А.
4) Координация АВ с отходящим кабелем.
Координация АВ с отходящим (защищаемым) кабелем (шинами)
Iном.АВ ≈ 80% Iдоп, А,
где Iдоп – длительно допустимый ток кабеля (шин).
5) Проверка на отключающую способность.
Согласно требованиям норм аппарат защиты должен выдержать отключение сквозного тока короткого замыкания, пройденного через него, и остаться в работоспособном состоянии.
Проверка осуществляется по максимальному току КЗ за аппаратом. У большинства АВ отключающая способность маркируется значением в Амперах или буквой на фасадной стороне устройства.
Если в характеристиках защитного устройства указывается два параметра (номинальная рабочая Ics и номинальная предельная Icu отключающие способности), то выбирать защитное устройство необходимо по минимальному значению (рабочей отключающей способности Ics). Допускается выбор по предельной отключающей способности, если аппарат не является вводным (ГОСТ Р 50571.5.53-2013 п.533.3⎘)
Ics(cu) > Iкз, кА.
6) Проверка на чувствительность.
При проверке рассматривается минимальный ток КЗ (чаще всего однофазный) в конце защищаемого участка. Минимальное значение коэффициента чувствительности Кч регламентировано Правилами технической эксплуатации электроустановок потребителей, Приложение 3 п.28.4⎘ и не должно быть меньше 1,1
Iкз/Iто.АВ ≥ 1,1,
где Iто – ток срабатывания токовой отсечки (ТО) АВ. У модульных АВ, с наиболее распространённой характеристикой «С», Iто лежит в диапазоне 5..10∙Iном.АВ, у блочных – может регулироваться.
Но согласно п.7.2.1.2.4⎘ и п.8.3.3.1.2 ГОСТ Р 50030.2-2010⎘, задающего требования к АВ, расцепитель токов КЗ должен вызывать размыкание выключателя с максимальной погрешностью 20% и срабатывание расцепителей токов КЗ проверяется при 120 % уставки. То есть при Кч < 1,2 срабатывание автоматов не гарантируется. В соответствии с этим разные источники рекомендуют принимать значение Кч от 1,4 до 1,5 или даже до 1,7. Мы же рекомендуем принимать коэффициент чувствительности, равный или больший 1,4, для автоматов с номинальным током до 100 А и 1,25 – для прочих АВ (как в типовом проекте 12640тм т.1 1985г.⎘)
Iкз/Iто.АВ ≥ 1,4 (для Iном.АВ < 100 А),
Iкз/Iто.АВ ≥ 1,25 (для Iном.АВ ≥ 100 А).
7) Проверка на селективность.
Селективность – это координация рабочих характеристик двух или нескольких устройств для защиты от сверхтоков с таким расчетом, чтобы в случае возникновения сверхтоков в пределах указанного диапазона срабатывало только устройство, предназначенное для оперирования в данном диапазоне, а прочие не срабатывали.
Для соблюдения селективности с токовыми отсечками выше- и нижестоящих аппаратов защиты вводят коэффициент согласования Ксогл, равный 1,3..1,5
Iто.ниж∙1,3..1,5 ≤ Iто.АВ ≤ Iто.выш/1,3..1,5,
либо выбирают автоматы одного производителя на основе заводских таблиц координации устройств. Такие таблицы рекомендуют последовательно устанавливать аппараты, отличающиеся не менее чем на две ступени по шкале номинальных токов (например, 40 и 25 А, а не 32 и 25 А).
Для согласования по времени можно «замедлить» срабатывание ТО вышестоящего аппарата на ступень селективности ∆t. Чаще всего такая поправка вводится в секционных (СВ) и вводных (ВВ) выключателях, её значение принимается равным 0,1..0,2 с
tто.вв = tто.св + ∆t = 0,1 + 0,1 = 0,2 с.
Итоговое значение времени срабатывания АВ не должно превышать предела в 0,5 с, налагаемого требованиями ПУЭ⎘ и ГОСТ Р 50571.3⎘ к распределительной линии. Хотя этими же НТД допускается увеличение времени отключения до 5 с в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки.
Введение данного коэффициента Ксогл и ступени ∆t конечно способствует селективному срабатыванию аппаратов при КЗ, но достоверную картину правильного выбора автоматов может показать только карта селективности. Поэтому Заказчики часто требуют её отражения в проекте.
Очень подробно про селективность написано в методичке АББ «Селективность АВ АББ в сетях низкого напряжения» 2007 года⎘, где авторы выделяют также токовую, временную, энергетическую и зонную селективности.
Соблюдая все указанные выше пункты при выборе и проверке АВ, нужно помнить также незначительную их особенность. А именно то, что минимальный ток срабатывания АВ при перегрузке равен 1,15..1,35-кратному номинальному току, то есть при переходе номинального порога автомата током нагрузки ещё не гарантируется его срабатывание.
В этой статье мы не коснулись вопроса количества полюсов АВ (нужно ли устанавливать двух- и четырёхполюсные АВ в однофазной и трёхфазной сети соответственно), не рассмотрели так называемые быстродействующие (токоограничивающие) выключатели, дифавтоматы и многое другое. Планируем коснуться этого позже. Разнообразие автоматов представлено в следующих статьях серии.
ВЫВОД. Выбор автоматического выключателя – это довольно непростая задача, требующая тщательного анализа. От того, как он будет проведён, зачастую зависит надёжность электроснабжения и бюджет Заказчика.
Надеемся, что данная статья позволит наиболее объективно подойти к выбору автоматов не только простому обывателю, далёкому от всех нюансов электротехники, но и энергетику, имеющему большой профессиональный опыт проектирования, монтажа или эксплуатации электрооборудования.
СЛУЧАЙ ИЗ ПРАКТИКИ. Поставщики высоковольтного электрооборудования, особенно иностранного, зачастую грешат установкой автоматических выключателей с заниженными параметрами. Это (возможно) удешевляет оборудование, не влияя на его работоспособность, но противоречит стандартам.
Один такой случай произошёл при монтаже высоковольтного разъединителя 110 кВ. В цепи питания привода разъединителя с рабочим током 2 А установлен АВ номиналом в 1 А. Время срабатывания автомата при двукратном превышении номинала, согласно время-токовой характеристике, от 20 до 100 с, время работы привода – не более 10 с. То есть двигатель привода хоть и работает в зоне перегрузки автомата, но за время его работы тепловая защита не успевает отработать.
Согласно ГОСТ Р 50571.4.43-2012 такой режим недопустим. Пункт 433.1 гласит: номинальный ток защитного устройства должен быть больше расчётного тока цепи и меньше длительно допустимого тока кабеля
Iрасч ≤ Iном.АВ ≤ Iдоп.
Кстати, указанный ГОСТ 2012 года – это перевод европейского же стандарта МЭК 2008 года.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
В советские времена было нормой строить громоздкие сооружения на обширной территории. Это касалось и электрических подстанций. Отдавая дань прошлому, можно с уверенностью сказать, что строилось это надёжно, как говориться, на века. Но в современных условиях при строительстве и реконструкции подстанций нельзя не учитывать факторы, которые порой становятся важнее фактора надёжности. Такими аспектами могут быть и экономическая составляющая, и срок реализации, и недолговременное использование. Экономическая составляющая, в свою очередь, может идти флагманом, так как стоимость возведения, аренда излишней земли, убытки от простоя оборудования выходят на первый план при анализе затрат.
Какие они – подстанции сегодняшнего дня и ближайшего будущего, что можно улучшить с их помощью и какие задачи побуждают их создание? Ответы на эти вопросы – в продолжение темы блочных подстанций (начало см. в статье Блочно-модульные подстанции⎘).
Трансформаторная подстанция – это электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств.
Современные подстанции можно разделить на три типа: открытые блочные, закрытые блочно-модульные и мобильные. Всех их объёдиняет компактность и сжатые сроки строительства, что зачастую позволяет сэкономить на капитальных затратах без снижения качества продукции. Они могут создаваться как независимо друг от друга, так и в различных взаимных сочетаниях. Большинство технологических процессов при создании этих подстанций происходит на заводе-изготовителе, а на площадке строительства фактически происходит их досборка.
Итак, третий и наименее распространённый тип современных (быстровозводимых) подстанций: мобильные подстанции.
Мобильная подстанция – это трансформаторная подстанция, установленная на шасси.
Номиналы используемых мобильных подстанций: ПС 110/6(10), 35/6(10), 110/35, 10/6 кВ.
Мобильная подстанция (МПС) может применяться при ремонте и реконструкции стационарных подстанций – взамен выведенной части подстанции, временно – при увеличении нагрузок, а также при новом строительстве – с учётом соответствующего экономического обоснования.
Экономически применение МПС оправдывается минимальной занимаемой площадью. Для сравнения: мобильная подстанция 35/10 кВ устанавливается на площадке 20х7 метров, такая же стационарная – от 36х25 метров. Также для неё не нужно проводить экспертизу проекта – она поставляется как готовое изделие, а нужно лишь получить акт от Ростехнадзора. Преимуществом служит и небольшое время так называемого «разворота» (времени, затраченного от момента приезда подстанции на площадку до готовности к её включению): от паспортных двух дней до реальных двух-трёх недель.
Ниже рассмотрим некоторые уникальные особенности мобильной подстанции.
Возможна параллельная работа нескольких подстанций для получения необходимой мощности и степени надёжности.
Мобильную подстанцию необходимо устанавливать на подготовленную площадку, организовывать контур заземления по периметру, ограждать, предусматривать молниезащиту.
Подстанции с высшим напряжением 110 кВ располагаются на двух шасси, 35 и 10/6 кВ – на одном. В первом варианте КРУЭ-110 и силовой трансформатор занимают первый трал, ЗРУ-6(10) с ОПУ – второй. Во втором варианте ОРУ-35 может размещаться на седле трала, а трансформатор и ЗРУ-6(10) – на платформе.
В ЗРУ 6 (10) кВ располагаются:
- ячейки КРУ (КСО) 6 (10) кВ одностороннего обслуживания;
- шкафы релейной защиты и автоматики;
- шкафы системы постоянного оперативного тока с аккумуляторной батареей;
- трансформатор собственных нужд (ТСН) (в ячейке КРУ или КСО, либо выносится за пределы ЗРУ в специальном защитном кожухе);
- шкаф собственных нужд;
- шкаф системы телемеханики.
Используемые силовые трансформаторы: специального типа, уменьшенных габаритов.
Мощность подстанций 110 кВ: от 16 до 25 МВА включительно; 35 кВ: 4 –10 МВА.
Высоковольтные соединения выполняются кабелем, комплектными токопроводами (КРУЭ 110 кВ), а также неизолированными проводами или шинами. Неизолированные провода и шины применяются для оборудования до 35 кВ включительно и требуют установки дополнительных ограждений для соблюдения электробезопасности.
РУ низшего напряжения может быть универсальным, применимым как на напряжение 6, так и 10 кВ. В этом случае оборудование выбирается на номинал 10 кВ, в силовом трансформаторе предусматривается специальный привод для перевода с 6 на 10 кВ, а в ТСНе производится перевод схемы соединения обмотки ВН с треугольника на звезду.
Мощности ТСН, как правило, достаточно 40 кВА, что обеспечивает компактное его размещение.
Отходящие линии могут быть как кабельными, так и воздушными.
Для подключения питания ПС может понадобиться дополнительная установка стационарного линейного разъединителя 110 кВ либо монтаж линейного портала 35 кВ.
При размещении подстанции необходимо задуматься об организации связи: зоне покрытия сотовой сети или возможности подключения по другим каналам.
Как указывалось выше, МПС создаются в том числе для трансформации напряжения 110/35 кВ, что применимо в случае резервирования трансформаторов такого же класса напряжений. Устанавливаться они могут за пределами подстанций, на подходе к ним, в разрез существующих воздушных линий.
ЗРУ 35 кВ стандартного транспортного габарита не позволяет обеспечить необходимый коридор обслуживания из-за больших размеров ячеек, поэтому используется вариант увеличения внутреннего пространства с помощью лёгких конструкций по месту.
Компоновка оборудования должна учитывать нагрузочную способность трала, допустимую нагрузку на ось и транспортный габарит для передвижения по дорогам общего пользования. Для этого применяются низкорамные тралы грузоподъёмностью до 60 тонн.
Недостатками мобильных подстанций являются: ограниченное кол-во присоединений (от 3-х до 5-ти), ещё достаточно малый опыт эксплуатации, отсутствие отечественных производителей оборудования (в частности, силовых трансформаторов), сложность проезда в труднодоступные места.
ВЫВОД. Подстанцией может быть не только капитальное сооружение, которое нужно спроектировать, пройти экспертизу проекта, затратить силы и средства на закупку и строительство. В роли подстанции может выступать временное сооружение, такое как мобильная электрическая подстанция. Также как и другие, она имеет свои достоинства и недостатки, но главной её особенностью является манёвренность, позволяющая оперативно решить вопрос покрытия электрических нагрузок.
Настоящая статья может помочь энергетику взвесить все «за» и «против» МПС, а также сформулировать основные требования, предъявляемые при закупке.
СЛУЧАЙ ИЗ ПРАКТИКИ. Приезжаем к месту установки МПС. Она в работе: подключена к ВЛ 110 кВ, установлен линейный разъединитель для создания видимого разрыва, выполнено заземление и ограждение, трансформатор гудит. Всё выполнено качественно, с применением зарубежного оборудования. Смущает одно – исполнение маслоприёмника под трансформатором. На фото можно увидеть его качество. Выполнен он из листовой стали, сваренной между собой, образуя замкнутый борт под тралом поверх железобетонной площадки. Окрашен частично и имеет неэстетичный вид. Но не это главное!
Во-первых, герметичность такого сооружения в случае разлива трансформаторного масла не выдерживает никакой критики. Во-вторых, маслоприёмники под трансформаторы с объёмом масла до 20 т (в нашем случае – 12 т) допускается выполнять без отвода масла в соответствии с п.4.2.69 ПУЭ⎘, но для этого должны быть созданы определённые условия, чего выполнено не было. В-третьих, возникает вопрос: настолько ли важным является требование инспектирующих данный объект органов к установке оборудования для создания видимого разрыва со стороны питания (в соответствии с п.4.2.21 ПУЭ⎘ это является необязательным), в то время как не приняты меры по предотвращению развития аварии и охраны окружающей среды?
Ниже на фото представлены варианты решения данной проблемы.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
Крупнейшая в мире морская солнечная электростанция
Подробнее о ней — читайте в нашем канале