База знаний
2773

Расчёт ёмкостных токов замыкания на землю и выбор ДГР

Электрические сети среднего напряжения (СН) России работают, как правило, с изолированной или компенсированной нейтралью. Они характеризуются низкими токами однофазного замыкания на землю (ОЗЗ), но большой ёмкостью фаз относительно земли, что представляет большую опасность для оборудования, людей и животных в аварийных ситуациях.

Чтобы избежать негативных последствий, при проектировании новой сети СН или реконструкции существующей требуется расчёт ёмкостных токов ОЗЗ и (при необходимости) выбор компенсирующего устройства в виде дугогасящего реактора (ДГР).

Кабельно-воздушная линия и ДГР

Один из способов расчёта суммарного ёмкостного тока ОЗЗ на шинах подстанции и определения основных параметров ДГР представим в табличном виде в настоящей статье.

СОДЕРЖАНИЕ:

  1. Общие требования.
  2. Как определить ёмкостный ток замыкания на землю.
  3. Как выбрать ДГР.
  4. Расчёт.
  5. На что нужно обратить внимание при расчёте.
  6. Полный список нормативных документов.

1. Общие требования

Согласно правилам [1] и типовой инструкции [2] компенсация ёмкостного тока с применением ДГР должна выполняться при токах, превышающих следующие значения:

  • 30 А — в сети 6 кВ;
  • 20 А — в сети 10 кВ;
  • 15 А — в сети 15-20 кВ;
  • 10 А — в сети 35 кВ.

При этом ДГР должен быть подобран таким образом, чтобы степень расстройки его компенсации не превышала 5% — согласно правилам [1] и советской инструкции [2], либо 1% — согласно относительно свежим документам Россетей [3] и [4]. Современное оборудование способно автоматически подстроиться под любой из указанных диапазонов, поэтому не будем подробно останавливаться на этом.

2. Как определить ёмкостный ток замыкания на землю

Все линии, помимо активной составляющей, имеют реактивное сопротивление. Для сетей с изолированной нейтралью, особенно кабельных, наиболее характерна ёмкостная составляющая С реактивного сопротивления. И при возникновении короткого замыкания на землю в месте повреждения такой сети будет протекать суммарный ёмкостный ток I присоединения.

Ёмкостные токи текут через место повреждения

Опустив все промежуточные выкладки, приведём основную формулу для расчёта ёмкостного тока ОЗЗ

Iозз = √3 Uн ω (C0 n + Cлин) 10-6,

где Uн — номинальное напряжение сети;

ω = 2 π f = 314 Гц — круговая частота сети;

C0 — собственная ёмкость трансформаторных подстанций (высоковольтных двигателей);

Cлин — ёмкость линий электропередачи.

Как видно из формулы, получив все исходные параметры, рассчитать итоговое значение не составит труда.

3. Как выбрать ДГР

Зная теоретические основы электротехники, несложно догадаться, что для компенсации ёмкостного сопротивления сети необходимо лишь добавить в неё — индуктивное L. Для этого и предназначен ДГР. Он подключается в нейтраль «в голове» сети и настраивается в резонанс с её ёмкостью. Идеальный вариант с резонансной настройкой показан на рисунке ниже. Если невозможно добиться резонанса, то предпочтительным является режим с перекомпенсацией, согласно всё тем же нормам.

Ёмкостные токи текут навстречу индуктивным токам

Расчётная мощность реактора Qк, кВАр определяется по формуле:

Qк = ΣIозз Uн / √3.

При отсутствии данных о развитии сети мощность реактора следует увеличивать на 25%.

4. Расчёт

Допустим, мы имеем разветвлённую кабельную сеть (с воздушными участками), питаемую от одной из секций шин 10 кВ городской ПС 110 кВ, по пяти фидерам (Ф101-105). Известны тип и длина всех участков ЛЭП от ПС до конечной ТП, а также количество и номинальная мощность трансформаторов Sн во всех ТП.

Какой величины будет суммарный ёмкостный ток ОЗЗ в непосредственной близости от ПС? И какой ДГР установить на ПС для исключения негативного развития аварийной ситуации? Ответы на эти вопросы можно найти в таблицах.

Таблица 1. Расчёт токов однофазного замыкания на землю
Наименование
оборудования
Uн,
кВ
Трансформаторы ЛЭП Iозз, А
Sном, кВА С0,
нФ
n Тип S, мм2 Длина, м Слин,
нФ
8.00 191.40 1.13
1.50 285.60 1.56
0.20 1.41 0.01
1.50 506.00 2.76
1.20 191.40 1.09
0.50 146.85 0.81
0.40 0.00 0.00
0.30 80.85 0.44
0.20 78.12 0.43
0.20 2.66 0.02
0.20 9.64 0.05
0.20 4.37 0.02
0.20 0.36 0.00
1.50 759.00 4.14
1.20 1855.65 10.14
0.50 0.00 0.02
0.40 0.00 0.00
3.00 504.00 2.76
1.50 5.54 0.04
0.50 9.31 0.05
0.40 23.10 0.13
Таблица 2. Определение расчетной мощности дугогасящего реактора
Наименование
оборудования
Uн,
кВ
ΣIозз, А Qк, кВАр
Тек. значение +45% Тек. значение +45%
10 24.4 37.5 147 213

Таблицы можно редактировать. Для добавления дополнительных параметров сети в таблицу 1 нажмите «добавить строку». В результатах таблицы 2 по умолчанию сделаны ошибки. Нажмите «Выполнить расчёт» и ошибки будут исправлены. Для возвращения к исходному документу просто обновите страницу

5. На что нужно обратить внимание при расчёте

Голубым цветом залиты изменяемые ячейки. Расчётные итоги, на которые необходимо обратить внимание, выводятся с зелёной и (или) красной заливкой. Если итоговое текущее значение Iозз находится в красной зоне, то ДГР необходим, для зелёной — его установка необязательна.

Расчёт выполнен для одной секции шин. Для двух-, четырёх- или многосекционных РУ необходимо выполнять расчёт на каждую из секций.

Рассмотренная в примере сеть взята из реального проекта и расположена в растущем городе-миллионнике России, поэтому итоги указаны с перспективой увеличения на 45%.

Таблицы наглядно показывают, что наибольшую ёмкость имеют кабельные линии, у трансформаторов и воздушных линий — она минимальна.

6. Полный список нормативных документов

Полный список документов, отражающих рассмотренные и не только — вопросы, с указанием конкретных пунктов, можно найти в разделах НТД и ТИПОВЫЕ по ссылке 1⎘ и ссылке 2⎘.

Там также есть:

  • требования к дугогасящим реакторам;
  • подключение дугогасящего реактора к ТСН;
  • расчёт истинного значения тока дугогасящего реактора;
  • установка дугогасящего реактора.

ВЫВОД

В этой статье рассмотрена схема так называемой компенсированной нейтрали в сети среднего напряжения. Выполнен расчёт ёмкостного тока ОЗЗ и подбор ДГР. Воспользоваться представленным расчётным методом может каждый желающий — для этого достаточно иметь на руках электрическую схему проектируемой (реконструируемой) сети.

Схем заземления нейтрали существует несколько. Выбор той или иной из них порождает необъятное множество споров в научном сообществе на протяжении как минимум пары десятков лет. Мы не ставим своей целью участие в этих дискуссиях, а пытаемся лишь создать инструменты, которые могут помочь в реализации выбранного пути.

Заказать подобный расчёт можно через форму обратной связи на сайте

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

  • Энергетик
  • 29 февраля 2024

Изолированная нейтраль обречена на исчезновение

Подробнее

  • Энергетик
  • 29 марта 2024

Расчёт резистивного заземления нейтрали

Подробнее

378

База знаний на Энергетик.ру. Руководство пользователя

База знаний — это библиотека, содержащая информацию, собранную по результатам решения предыдущих задач для устранения текущих проблем, помощи менее опытным сотрудникам и обучения искусственного интеллекта.

Главный слайд

Настоящее руководство описывает весь функционал базы знаний на портале Энергетик.ру для возможности полноценного её использования.

СОДЕРЖАНИЕ:

  1. Состав Базы знаний.
  2. Статьи.
  3. НТД и типовые проекты.
  4. Сортировка.
  5. Фильтрация.
  6. Дополнительная информация.

1. Состав Базы знаний

Действующие НТД и типовые проекты — фундамент, на которые опирается каждый проектировщик

В настоящий момент в Базу знаний включены:

  • статьи по электротехнической тематике;
  • нормативно-технические документы;
  • типовые проекты.

В перспективе появятся:

  • шаблоны и модели в формате разработки.

2. Статьи

Статьи — материал для углубленного изучения проблемы

В статьях отражены проблемы энергетической отрасли в целом и направления проектирования в частности, новшества, на которые следует обратить внимание, и способы оптимального решения текущих задач на основе опыта ранее выполненных работ.

3. НТД и типовые проекты

В базе знаний уже собрано более 500 уникальных поисковых запросов, и она продолжает расширяться

Здесь собран объёмный перечень документации, регламентирующий сферу электроэнергетики. Этот перечень может пригодиться при проектировании, строительстве или эксплуатации объекта. А документы скомпонованы таким образом, чтобы найти в одном месте все требования или решения по тому или иному вопросу: важно лишь правильно отфильтровать лишнее.

4. Сортировка

В «НТД» — документы, обязательные к исполнению, в «Типовых» — носящие рекомендательный характер

На документы, представленные во вкладке «НТД», можно привести ссылки в своём проекте, обосновав то или иное решение, «Типовые» — помогут выполнить работу подобным образом.

«Разделы» в таблицах — это главы или тома проекта
«Подразделы» — не несут важной смысловой нагрузки

Сортировка по «разделам» выполнена в алфавитном порядке. Названия разделов включают важные вопросы, главы или тома, отражаемые в проекте.

«Подразделы» служат в качестве дополнения информации, не представленной в названиях разделов.

Графа «требование» включает основные поисковые запросы, скомпонованные в группы
Сортировка групп происходит автоматически, с выводом в топ наиболее востребованных запросов пользователей

Перемещение групп по приоритету выполняется в пределах своего «раздела».

Документы внутри групп собраны в порядке важности

Документы в колонке «НТД» расставлены в порядке, рекомендуемом при изучении вопроса, отражённого в предыдущей колонке.

Ссылки на документы (пункты документов) сделаны интерактивными

Ссылка в колонке «НТД (значение)» ведёт на документ (или пункт документа), расположенный на настоящем портале, сайте-правообладателе или ином авторитетном источнике.

5. Фильтрация

Отфильтруйте таблицу по нужному параметру — это позволит изучить волнующий Вас вопрос подробнее

Отфильтровав по «разделу», «подразделу» или «НТД», можно понять качественный состав собранных вопросов.

Графа «требование» выполнена в виде поисковой строки

С помощью этой функции по введённой поисковой фразе, слову или части слова можно найти необходимое «требование». Положение ключевого слова в «требовании» (в начале, конце или середине) не влияет на эффективность поиска. «Запуск» функции поиска выполняется вручную, клавишей «Enter», либо автоматически, спустя несколько секунд после ввода первой буквы в графе «Требование».

Большинство строк неуникальны и дублируются в разных «разделах»

Требования могут дублироваться — это сделано для удобства поиска документа при фильтрации «раздела». В ближайшем будущем мы научим Базу знаний скрывать все неуникальные позиции при фильтрации, для исключения задвоения.

Отфильтровав список во вкладке «НТД», Вы получите отфильтрованный список во вкладке «Типовые»
Отфильтрованным списком можно поделиться

Переход по вкладкам может быть удобен для комплексного изучения того или иного вопроса.

Возможность «поделиться» доступна только зарегистрированным пользователям — отфильтрованный список документов можно передать ссылкой из командной строки браузера. Пример — здесь⎘.

Для возвращения к исходной версии нажмите «Сбросить фильтр»

Для сброса фильтрации недостаточно обновления страницы, необходимо нажать «Сбросить фильтр» — обновление произойдёт через 1-2 секунды (при условии достаточной скорости подключения к сети).

6. Дополнительная информация

Стрелка в ссылке показывает отражение этого вопроса в соседней вкладке

Стрелка влево (или вправо) в колонке «НТД (значение)» означает, что в решении этого вопроса Вам может помочь документ в соседней вкладке, «НТД»⎘ или «Типовые»⎘ соответственно.

Присоединяйтесь, чтобы не пропустить самое важное

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

  • Энергетик
  • 13 января 2023

Противоречия в энергетике

Подробнее

  • Энергетик
  • 25 июля 2023

Солнечная энергия — самый перспективный источник на Земле

Подробнее

2431

Выбор ТСН

Трансформатор собственных нужд (ТСН) — это силовой трансформатор, предназначенный для питания вспомогательных устройств переменного тока, обеспечивающих работу подстанции.

Трансформатор собственных нужд - вводной выключатель - наружное освещение подстанции

Как рассчитать мощность ТСН для всего многообразия подстанций, существует ли универсальный способ для этого, а также на что необходимо обратить внимание при выборе ТСН, читайте в этой статье.

СОДЕРЖАНИЕ:

  1. Общие требования.
  2. Как рассчитывается мощность ТСН.
  3. Расчёт мощности ТСН.
  4. На что нужно обратить внимание при расчёте.
  5. Дополнительная информация по выбору ТСН.

1. Общие требования

Питание потребителей собственных нужд ПС должно осуществляться от двух независимых источников (для ПС 330 кВ и выше — от трёх источников). В качестве основных источников, как правило, выступают ТСН, в качестве дополнительного — дизель-генератор или внешняя сеть.

ТСН могут подключаться к шинам РУ низшего напряжения (чаще всего — РУ 10 кВ) через выключатель, располагаться между силовым трансформатором и этим РУ или стоять на вводе подстанции с защитой предохранителями (например, ТСН 35/0,4 кВ на ПС 35 кВ). Схема работы в паре организуется по принципу неявного резерва, то есть раздельно, с АВР.

2. Как рассчитывается мощность ТСН

Мощность ТСН определяется суммарной мощностью всех потребителей

SΣ = √(PΣ2 + QΣ2)

Для ПС без обслуживающего персонала в нормальном режиме допускается загружать ТСН не более чем на 50% согласно СТО Россетей [1] и [2]

SΣ ≤ 0,5Sном

Для обслуживаемых ПС этот показатель не нормируется, но при определении оптимальной загрузки трансформатора следует ориентироваться на рекомендации производителей и возможную перегрузку в послеаварийном режиме. В данном случае мы рекомендуем принимать 65%

SΣ = 0,65Sном

Активная нагрузка отдельного потребителя определяется выражением

P = PустnKс

Его реактивная нагрузка

Q = Ptgφ

Коэффициент спроса Kс для разного рода нагрузки ПС можно найти в Приложении А⎘ СТО [3].

3. Расчёт мощности ТСН

Допустим, мы имеем современную подстанцию 110/10 кВ без постоянного обслуживающего персонала. Схема ОРУ № 110-9, с 4 транзитными линиями. Высоковольтные выключатели — элегазовые баковые.

Таблица 1. Основные потребители собственных нужд подстанции
Наименование потребителя Pуст,
кВт
n η cosφ tgφ Расчётная нагрузка
Летом Зимой
Kс Pл,
кВт
Qл,
кВАр
Kс Pз,
кВт
Qз,
кВАр
Силовые трансформаторы и реакторы
Вентиляторы охлаждения
трансформаторов
0.85 0.85 0.62 1.0 7.06 4.38 0.70 4.94 3.06
РПН трансформаторов 0.78 0.80 0.75 0.30 1.15 0.86 0.30 1.15 0.86
Насос системы охлаждения
типа ДЦ
0.78 0.80 0.75 1.0 0.00 0.00 1.0 0.00 0.00
Охлаждение ШР 0.85 0.85 0.62 1.0 0.00 0.00 0.70 0.00 0.00
Обогрев ШАОТ 0.98 0.98 0.20 0.12 0.00 0.00 1.0 0.00 0.00
ОРУ
Питание приводов
выключателей 35-750 кВ
0.68 0.70 1.02 0.12 1.36 1.39 0.12 1.36 1.39
Питание приводов
разъединителей 35-750 кВ
0.68 0.70 1.02 0.12 1.68 1.71 0.12 1.68 1.71
Обогрев приводов
выключателей 35-750 кВ
0.98 0.98 0.20 0.12 3.86 0.77 1.0 32.14 6.43
Обогрев приводов
разъединителей 35-750 кВ
0.98 0.98 0.20 0.12 1.07 0.21 1.0 8.92 1.78
Обогрев шкафов 0.98 0.98 0.20 0.12 0.51 0.10 1.0 4.29 0.86
Наружное освещение 1.00 0.95 0.33 0.50 3.00 0.99 0.50 3.00 0.99
Наружное освещение 1.00 0.95 0.33 0.35 0.00 0.00 0.35 0.00 0.00
Охранное освещение 1.00 0.95 0.33 1.0 1.20 0.40 1.0 1.20 0.40
ОПУ
Радиаторы отопления 0.90 0.98 0.20 0 0.00 0.00 0.85 18.89 3.78
Рабочее освещение 1.00 0.95 0.33 0.70 0.70 0.23 0.70 0.70 0.23
Вентиляция здания 0.85 0.85 0.62 0.80 10.35 6.42 0.60 7.76 4.81
Кондиционирование здания 1.00 0.85 0.62 0.55 8.80 5.46 0.10 1.60 0.99
Вентиляция АБ 0.85 0.85 0.62 1.0 1.76 1.09 1.0 1.76 1.09
Питание ЗВУ 0.91 0.83 0.67 0.12 7.38 4.94 0.12 7.38 4.94
Питание оборудования
ТМ и связи
0.95 0.95 0.33 1.0 1.05 0.35 1.0 1.05 0.35
Питание системы учета 0.95 0.95 0.33 1.0 0.15 0.05 1.0 0.15 0.05
Освещение шкафов 1.00 0.95 0.33 0.12 0.22 0.07 0.12 0.22 0.07
Розеточная сеть 0.95 0.85 0.62 0.20 1.68 1.04 0.20 1.68 1.04
Электрический котёл 0.98 0.98 0.20 0 0.00 0.00 0.85 0.00 0.00
Сетевой насос 0.78 0.80 0.75 0 0.00 0.00 0.85 0.00 0.00
Водонагреватель 0.90 0.98 0.20 0.40 0.00 0.00 0.40 0.00 0.00
Калорифер вентиляции
здания
0.98 0.98 0.20 0 0.00 0.00 0.80 0.00 0.00
ЗРУ, КРУН
Радиаторы отопления 0.90 0.98 0.20 0 0.00 0.00 0.85 7.56 1.51
Рабочее освещение 1.00 0.95 0.33 0.30 0.19 0.06 0.30 0.19 0.06
Вентиляция 0.85 0.85 0.62 0.80 1.13 0.70 0.60 0.85 0.53
Кондиционирование 1.00 0.85 0.62 0.55 2.20 1.36 0 0.00 0.00
Освещение шкафов 1.00 0.95 0.33 0.12 0.05 0.02 0.12 0.05 0.02
Прочее
Питание оперативной
блокировки
0.95 0.95 0.33 1.0 0.02 0.01 1.0 0.02 0.01
Питание управления ДГР 0.95 0.50 1.73 1.0 0.34 0.59 1.0 0.34 0.59
Питание привода ДГР 0.78 0.80 0.75 0.3 13.54 10.15 0.3 13.54 10.15
Обогрев, освещение БСК 0.85 0.90 0.48 0.12 0.42 0.20 0.7 2.47 1.19
Система видеонаблюдения 0.95 0.85 0.62 1.0 0.26 0.16 1.0 0.26 0.16
Охранная и пожарная
сигнализации
0.95 0.85 0.62 1.0 0.53 0.33 1.0 0.53 0.33
Насос системы
пожаротушения
0.78 0.80 0.75 0.10 0.00 0.00 0.10 0.00 0.00
Насос системы бытового
водоснабжения
0.78 0.80 0.75 0.80 0.00 0.00 0.80 0.00 0.00
Электродвигатель
компрессора
0.78 0.80 0.75 0.40 0.00 0.00 0.40 0.00 0.00
Кран-балка 0.95 0.85 0.62 0 0.00 0.00 0 0.00 0.00
Прочие потребители 0.85 0.85 0.62 1.0 0.00 0.00 1.0 0.00 0.00
Суммарная мощность потребителей СН летом 0.85 0.61 71.66 44.04 - -
Суммарная мощность потребителей СН зимой 0.93 0.39 - - 125.68 49.38
Таблица 2. Ремонтные нагрузки
Наименование потребителя Pуст,
кВт
n η cosφ tgφ Расчётная нагрузка
Kс P,
кВт
Q,
кВАр
Сварочная сеть 0.90 0.80 0.75 1.00 14.44 10.83
Таблица 3. Определение мощности ТСН
Условие выбора Sн,
кВА
Sр,
кВА
SΣ,
кВА
Sном ТСН,
кВА
Kн Kр
Летом 84.11 18.06 102.17 0.28 0.64
Зимой 134.92 18.06 152.98 0.42 0.94

В результатах таблицы 3 по умолчанию сделаны ошибки. Нажмите «Выполнить расчёт» и ошибки будут исправлены. Для возвращения к исходному документу просто обновите страницу.

4. На что нужно обратить внимание при расчёте

Голубым цветом залиты изменяемые ячейки. Расчётные итоги выводятся с зелёной или красной заливкой.

Расчёт выполнен для установки двух ТСН. В случае однотрансформаторных ПС полученный коэффициент загрузки в нормальном режиме необходимо увеличить в 2 раза.

В нормальном режиме суммарная мощность потребителей (из таблицы 1) равномерно нагружает оба трансформатора. В ремонтном режиме в работе только один ТСН, а к основным потребителям добавлена ремонтная нагрузка (из таблицы 2).

Итоги расчётов показали, что ТСН выбран правильно. Наибольшая загрузка в нормальном режиме составила 42% (что меньше 50%), ремонтная — не превысила длительно допустимую (1,05Sном — согласно п.474⎘ ПТЭЭС [4]).

Суммарный коэффициент реактивной мощности tgφ может быть интересен для определения необходимости её компенсации. В данном материале этот параметр приведён для информации и не вносит поправки в расчёты. Достаточно помнить, что его значение (в случае подключения к внешней сети) ограничено требованиями Минэнерго [5] и для 0,4 кВ не должно превышать 0,35.

5. Дополнительная информация по выбору ТСН

Дополнительная информация по вопросу установки ТСН на подстанциях собрана в разделе НТД и доступна по ссылке 1⎘ и ссылке 2⎘.

Там, в частности, можно найти:

  • общие требования к собственным нуждам ПС;
  • допустимые схемы соединения трансформаторов;
  • правила включения трансформатора тока в нейтраль ТСН;
  • категории электроприёмников по надёжности.

ВЫВОД

Как показал расчёт, выбор трансформатора собственных нужд подстанции не является сложной задачей. Но неправильный его выбор может негативно повлиять на текущие издержки обслуживающей компании или надёжность электроснабжения потребителей.

В нашем примере: если выбрать ТСН меньшей мощности (например, 100 кВА), то мы получим загрузку в 68%, что будет являться экономически более выгодным вариантом, но это недопустимо с точки зрения СТО [1] и [2] для подстанций без обслуживающего персонала. Требования СТО здесь вполне обоснованны и исключают вероятность длительной перегрузки ТСН в послеаварийном режиме.

Заказать подобный расчёт можно через форму обратной связи на сайте

  • Энергетик
  • 19 мая 2022

Как выбрать автоматический выключатель

Подробнее

  • Энергетик
  • 06 июня 2024

Расчёт сети переменного тока 0,4 кВ

Подробнее

11885

Пусконаладочные работы

Пусконаладочные работы (ПНР) — это комплекс работ, выполняемых на завершающей стадии строительства, реконструкции или капитального ремонта объекта для качественной оценки вводимого оборудования.

Сварщик работает на трансформаторе

Запуск любого объекта энергетики, как правило, осуществляется после пусконаладки, комплексного опробования и приёмки в эксплуатацию. Первое — находится в зоне ответственности подрядной организации, второе и третье — непосредственного заказчика (застройщика). Последующий ввод электроустановки в эксплуатацию по проектной схеме производится после получения разрешения от органов Ростехнадзора и органа исполнительной власти, выдавшего разрешение на строительство (последнее — по необходимости).

Настоящая статья не ставит своей целью рассказать о правилах ввода в работу оборудования — на это составляются отдельные программы ПНР, она призвана лишь сформировать укрупнённый состав этих работ, обычно отражаемый в ведомости ПНР.

СОДЕРЖАНИЕ:

  1. Кому может быть полезна эта статья.
  2. Источники информации.
  3. Пояснения к ведомостям ПНР.
  4. Ведомость ПНР основного оборудования.
  5. Ведомость ПНР оборудования РЗА.
  6. Ведомость ПНР оборудования АСУ ТП (ССПИ, телемеханики).
  7. Ведомость ПНР оборудования связи.

1. Кому может быть полезна эта статья

Кажется очевидным, что данная работа в первую очередь призвана на помощь наладчикам, выполняющим свои должностные обязанности. Но наиболее остро этот вопрос встаёт ещё на этапе проектирования. Дело в том, что раньше стоимость этих работ на этапе ПД учитывалась укрупнённо, процентным отношением от стоимости оборудования, и необходимости в детальном описании этих работ у проектировщика не возникало. После введения Методики [1] многое изменилось, и теперь без составления ведомости ПНР не обходится ни один проект.

Главные лица, кому призвана помочь данная статья: специалист сметной части проекта и инженер (инженеры), участвующий в составлении ведомости объёмов работ.

2. Источники информации

В качестве основных источников информации использовано несколько документов. Часть исходной информации содержится в главе 1.8 ПУЭ [2], более детальный состав работ можно найти в СТО Россетей [3], наименования и шифр расценок — в сборниках [4], [5]. Срок действия старой редакции Правил технической эксплуатации [6] уже истёк, но именно этот документ, по нашему мнению, наиболее удобен в работе — приложение с нормами испытаний авторы не включили в последнюю версию документа.

3. Пояснения к ведомостям ПНР

Для удобства весь объём ПНР по оборудованию сведён в отдельные раскрывающиеся таблицы. Таблицы скомпонованы по разделам согласно составу ПД. Порядок таблиц внутри разделов определён на основании запросов пользователей в сети Интернет, от наиболее актуального — к наименее.

Значения в графе «количество» приняты в соответствии с типовыми программами ПНР. Например, измерение сопротивления изоляции должно производиться мегаомметром у кабелей, объединённых вместе по принципу функционального назначения (цепи переменного тока, постоянного тока, выходные, отключения, сигнализации и пр.), то есть пучками. Испытания всех элементов тоже требуются не всегда. Непоследнюю роль в количественном определении той или иной позиции играют затраты человеческого труда (чел*ч), указанные в последнем столбце сборников. Согласно ним количество измерений и испытаний обмоток ТН и ТТ принято по количеству оборудования, а не обмоток.

4. Ведомость ПНР основного оборудования

ОРУ 330 кВ

ПНР выключателя


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Выключатель воздушный с воздухонаполненным отделителем напряжением до 35..500 кВ шт. 1 01-03-008-01..009-05
2 Схема вторичной коммутации масляного выключателя с дистанционным управлением до 11..220 кВ схема 1 01-03-020-03..5
3 Устройство подогрева воздушного выключателя с одним нагревательным элементом шт. 1 01-03-022-01
4 За каждый нагревательный элемент сверх одного добавить к расценке 01-03-022-01 шт. 1 01-03-022-02
5 Измерение активного, индуктивного сопротивлений и ёмкости электрических машин и аппаратов шт. 1 01-11-022-01
6 Электродвигатель асинхронный с короткозамкнутым ротором, напряжением до 1 кВ шт. 1 01-07-001-01
7 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
8 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 3 01-11-028-02
9 Испытание аппарата коммутационного напряжением до 35 кВ испыт. 1 01-12-021-02
10 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Выключатель воздушный с воздухонаполненным отделителем напряжением до 35..500 кВ шт. 1 01-03-008-01..009-05
2 Трансформатор тока, встроенный во вводы выключателя, силового трансформатора шт. 1 01-02-017-07
3 Схема вторичной коммутации масляного выключателя с дистанционным управлением до 11..220 кВ схема 1 01-03-020-03..5
4 Устройство подогрева воздушного выключателя с одним нагревательным элементом шт. 1 01-03-022-01
5 За каждый нагревательный элемент сверх одного добавить к расценке 01-03-022-01 шт. 1 01-03-022-02
6 Измерение активного, индуктивного сопротивлений и ёмкости электрических машин и аппаратов шт. 1 01-11-022-01
7 Электродвигатель асинхронный с короткозамкнутым ротором, напряжением до 1 кВ шт. 1 01-07-001-01
8 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
9 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 3 01-11-028-02
10 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 12 01-11-028-02
11 Испытание аппарата коммутационного напряжением до 35 кВ испыт. 1 01-12-021-02
12 Испытание вторичной обмотки трансформатора измерительного испыт. 1 01-12-010-03
13 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Выключатель вакуумный напряжением до 11 кВ шт. 1 01-03-008-05
2 Схема вторичной коммутации масляного выключателя с дистанционным управлением до 11..35 кВ схема 1 01-03-020-03..4
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 3 01-11-028-02
5 Испытание аппарата коммутационного напряжением до 35 кВ испыт. 1 01-12-021-02
6 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Выключатель трёхполюсный напряжением до 1 кВ шт. 1 01-03-002-04..17
2 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02
3 Испытание аппарата коммутационного напряжением до 1 кВ (силовых цепей) испыт. 1 01-12-021-01

ПНР кабеля


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 2 01-11-011-01
2 Фазировка электрической линии или трансформатора с сетью напряжением свыше 1 кВ фазир. 1 01-11-024-02
3 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 1 01-11-028-01
4 Испытание кабеля силового длиной до 500 м напряжением до 110 кВ испыт. 1 01-12-027-01..3
5 За каждые последующие 500 м испытания силового кабеля напряжением до 110 кВ добавлять к расценке 01-12-027 испыт. 1 01-12-027-04..6


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 2 01-11-011-01
2 Фазировка электрической линии или трансформатора с сетью напряжением до 1 кВ фазир. 1 01-11-024-01
3 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 1 01-11-028-01

ПНР трансформатора


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор силовой трёхфазный масляный двухобмоточный напряжением до 11..500 кВ, мощностью до 0,32..1000 MBA шт. 1 01-02-002-01..5-06
2 Схема образования участка сигнализации уч. 1 01-10-002-01
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 2 01-11-028-02
5 Испытание трансформаторного масла на пробой испыт. 1 01-11-029-02
6 Испытание обмотки трансформатора силового испыт. 2 01-12-010-02
7 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор силовой трёхфазный масляный двухобмоточный напряжением до 11..500 кВ, мощностью до 0,32..1000 MBA шт. 1 01-02-002-01..3-11
2 Трансформатор тока, встроенный во вводы выключателя, силового трансформатора шт. 1 01-02-017-07
3 Автоматический регулятор напряжения силовых трансформаторов устр. 1 01-05-028-02..3
4 Схема разводки трехпроводной системы с количеством панелей (шкафов, ячеек) до 2 схема 1 01-06-021-01
5 Электродвигатель асинхронный с короткозамкнутым ротором, напряжением до 1 кВ шт. 6 01-07-001-01
6 Функциональная группа управления релейно-контакторная с общим числом внешних блокировочных связей до 200 шт. 1 01-09-010-01..8
7 Схема образования участка сигнализации уч. 1 01-10-002-01
8 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 20 01-11-011-01
9 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 2 01-11-028-02
10 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 6 01-11-028-02
11 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 6 01-11-028-02
12 Испытание трансформаторного масла на пробой испыт. 2 01-11-029-02
13 Испытание обмотки трансформатора силового испыт. 2 01-12-010-02
14 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01
15 Испытание вторичной обмотки трансформатора измерительного испыт. 1 01-12-010-03
16 Присоединение с количеством взаимосвязанных устройств до 20 шт. прис. 1 01-13-001-01..4


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор силовой однофазный масляный напряжением до 11 кВ шт. 1 01-02-004-02
2 Схема образования участка сигнализации уч. 1 01-10-002-01
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02
5 Испытание трансформаторного масла на пробой испыт. 1 01-11-029-02
6 Испытание обмотки трансформатора силового испыт. 1 01-12-010-02
7 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01

ПНР шкафа


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Выключатель трёхполюсный напряжением до 1 кВ шт. 10 01-03-002-04..17
2 Схема разводки трехпроводной системы с количеством панелей (шкафов, ячеек) до 2 схема 1 01-06-021-01
3 За каждую последующую панель (шкаф, ячейку) свыше 2 схема 1 01-06-021-02
4 Схема резервирования питания трехпроводной системы от другого источника питания с устройством релейно-контакторного переключателя схема 1 01-06-022-02
5 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
6 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 2 01-11-028-01
7 Испытание аппарата коммутационного напряжением до 1 кВ (силовых цепей) испыт. 3 01-12-021-01

ПНР заземления


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Измерение сопротивления растеканию тока заземлителя (контуру с диагональю до 1000 м) измер. 10 01-11-010-01..5
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 30 01-11-011-01
3 Определение удельного сопротивления грунта измер. 1 01-11-012-01
4 Замер полного сопротивления цепи «фаза-нуль» измер. 3 01-11-013-01
5 Снятие характеристик для определения напряжения прикосновения в точках, указанных в проекте точек 1 01-11-014-01

ПНР генератора


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Генератор синхронный (компенсатор) напряжением до 1 кВ, мощностью до (свыше) 100 кВт шт. 1 01-01-001-01..02
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 3 01-11-028-02
4 Испытание обмотки статора генератора напряжением до 1 кВ, мощностью до 1 МВт испыт. 1 01-12-001-01
5 Испытание обмотки возбуждения электрической машины явнополюсной испыт. 1 01-12-003-02

ПНР трансформатора тока


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор тока измерительный выносной напряжением: до 750 кВ шт. 1 01-02-017-01..06
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 2 01-11-028-02
4 Испытание первичной обмотки трансформатора измерительного испыт. 1 01-12-010-02
5 Испытание вторичной обмотки трансформатора измерительного испыт. 1 01-12-010-03


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор тока измерительный нулевой последовательности без подмагничивания шт. 1 01-02-018-01
2 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02
3 Испытание вторичной обмотки трансформатора измерительного испыт. 1 01-12-010-03

ПНР разъединителя


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Разъединитель трёхполюсный (однополюсный) напряжением до 1150 кВ шт. 1 01-03-005-01..08
2 Схема вторичной коммутации разъединителя с дистанционным управлением до 1150 кВ схема 1 01-03-024-01..7
3 Устройство подогрева воздушного выключателя с одним нагревательным элементом шт. 1 01-03-022-01
4 За каждый нагревательный элемент сверх одного добавить к расценке 01-03-022-01 шт. 1 01-03-022-02
5 Электродвигатель асинхронный с короткозамкнутым ротором, напряжением до 1 кВ шт. 3 01-07-001-01
6 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
7 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 4 01-11-028-02
8 Измерение переходных сопротивлений постоянному току напряжением до 110 кВ измер. 6 01-11-021-01..3
9 Испытание аппарата коммутационного напряжением до 35 кВ испыт. 1 01-12-021-02
10 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Разъединитель однополюсный напряжением от 110 до 220 кВ шт. 1 01-03-005-04
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение переходных сопротивлений постоянному току напряжением до 110 кВ измер. 1 01-11-021-03

ПНР изоляции


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02
2 Испытание изолятора опорного отдельного одноэлементного испыт. 1 01-12-024-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Испытание трёх элементов изолятора опорного многоэлементного или подвесного испыт. 1 01-12-024-02

ПНР трансформатора напряжения


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор напряжения измерительный однофазный напряжением: до 750 кВ шт. 1 01-02-015-01..08
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 2 01-11-028-02
4 Испытание первичной обмотки трансформатора измерительного испыт. 1 01-12-010-02
5 Испытание вторичной обмотки трансформатора измерительного испыт. 1 01-12-010-03


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор напряжения измерительный трёхфазный напряжением: до 35 кВ шт. 1 01-02-016-01..03
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 2 01-11-028-02
4 Испытание первичной обмотки трансформатора измерительного испыт. 1 01-12-010-02
5 Испытание вторичной обмотки трансформатора измерительного испыт. 1 01-12-010-03

ПНР комплектного распределительного устройства (КРУ)

ПНР реактора


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02
2 Испытание изолятора опорного отдельного одноэлементного испыт. 1 01-12-024-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Трансформатор силовой однофазный масляный напряжением до 11 кВ шт. 1 01-02-004-02
2 Автоматический регулятор, программируемый микропроцессорный комплекс устр. 1 01-05-028-05
3 Схема образования участка сигнализации уч. 1 01-10-002-01
4 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
5 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02
6 Испытание трансформаторного масла на пробой испыт. 1 01-11-029-02
7 Испытание обмотки трансформатора силового испыт. 2 01-12-010-02
8 Испытание цепи вторичной коммутации испыт. 1 01-12-029-01

ПНР ограничителя перенапряжений (ОПН)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Датчик контактный механический с числом цепей управления до 2 шт. 1 01-09-001-01
2 Измерение токов утечки ограничителя перенапряжений измер. 1 01-11-027-02
3 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02

ПНР конденсатора


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Конденсатор статический напряжением до 1 кВ однофазный шт. 120 01-08-033-01..05
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение активного, индуктивного сопротивлений и ёмкости электрических машин и аппаратов измер. 3 01-11-022-01
4 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 3 01-11-028-02
5 Испытание конденсатора статического напряжением до 10 кВ испыт. 3 01-12-022-02


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Конденсатор статический однофазный напряжением до 110 кВ шт. 1 01-08-033-04..05
2 Устройство отбора напряжения ШОН301 С-380, П10Н302С-1000 шт. 1 01-02-016-04
3 Разъединитель однополюсный напряжением от 110 до 220 кВ шт. 1 01-03-005-04
4 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
5 Измерение активного, индуктивного сопротивлений и ёмкости электрических машин и аппаратов измер. 1 01-11-022-01
6 Измерение сопротивления изоляции мегаомметром обмоток машин и аппаратов измер. 1 01-11-028-02
7 Испытание аппарата коммутационного напряжением до 35 кВ испыт. 1 01-12-021-02
8 Испытание конденсатора статического напряжением до 10 кВ испыт. 1 01-12-022-02

ПНР системы оперативного постоянного тока (СОПТ)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Выключатель постоянного тока быстродействующий напряжением до 1 кВ, номинальный ток до 1000 А шт. 10 01-03-003-01
2 Система постоянного тока с одной аккумуляторной батареей без элементного коммутатора шт. 1 01-06-001-01
3 Схема разводки трехпроводной системы с количеством панелей (шкафов, ячеек) до 2 схема 1 01-06-021-01
4 За каждую последующую панель (шкаф, ячейку) свыше 2 схема 1 01-06-021-02
5 Схема резервирования питания трехпроводной системы от другого источника питания с устройством релейно-контакторного переключателя схема 1 01-06-022-02
6 Устройство контроля уровня напряжения переменного или выпрямленного оперативного тока устр. 2 01-06-023-01
7 Схема контроля изоляции электрической сети: с применением релейно-контакторной аппаратуры и бесконтактных элементов схема 2 01-10-010-02
8 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
9 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 2 01-11-028-01
10 Испытание аппарата коммутационного напряжением до 1 кВ (силовых цепей) испыт. 3 01-12-021-01
11 Электрически взаимосвязанные устройства в электроустановках. Присоединение с количеством взаимосвязанных устройств до 5 шт. прис. 2 01-13-001-02


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Устройство выпрямительное с тремя режимами стабилизации напряжения или тока зарядки аккумуляторной батареи мощностью: до 50 кВА устр. 1 01-06-003-01..2
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 1 01-11-028-01


пп
Наименование работ Ед. изм. Кол-во Расценка
1 ПНР включены в ШПТ

ПНР ВЧ заградителя


пп
Наименование работ Ед. изм. Кол-во Расценка
1 ПНР не выполняются

5. Ведомость ПНР оборудования РЗА

Щит управления

ПНР шкафа зажимов


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Выключатель трёхполюсный напряжением до 1 кВ шт. 4 01-03-002-04..17
2 Схема разводки трехпроводной системы с количеством панелей (шкафов, ячеек) до 2 схема 1 01-06-021-01
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 2 01-11-028-01
5 Испытание аппарата коммутационного напряжением до 1 кВ (силовых цепей) испыт. 2 01-12-021-01

ПНР шкафа противоаварийной автоматики (ПА)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Устройство автоматической частотной разгрузки (АЧР) с последующим АПВ после восстановления частоты устр. 2 01-05-023-01..2
2 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 8 01-11-028-01
5 Испытание цепи вторичной коммутации испыт. 8 01-12-029-01

ПНР шкафа защиты трансформатора


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Терминал защиты трансформаторов двухобмоточных компл. 1 01-04-035-02
2 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 8 01-11-028-01
5 Испытание цепи вторичной коммутации испыт. 8 01-12-029-01

ПНР шкафа оперативной блокировки разъединителей (ОБР)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Схема электромагнитной блокировки коммутационных аппаратов, количество блокируемых аппаратов до 30 схема 1 01-03-025-01..5
2 Программируемый микропроцессорный комплекс компл. 1 01-05-028-05
3 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
4 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
5 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 8 01-11-028-01
6 Испытание цепи вторичной коммутации испыт. 8 01-12-029-01

ПНР центральной сигнализации (ЦС)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Схема образования участка сигнализации (центральной, технологической, местной, аварийной, предупредительной и др.) уч. 1 01-10-002-01
2 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
3 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 3 01-11-028-01
4 Испытание цепи вторичной коммутации испыт. 3 01-12-029-01

ПНР шкафа основных защит линии


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Продольная дифференциальная защита линий компл. 1 01-04-020-03
2 Терминал дистанционной и токовой защиты линий компл. 1 01-04-033-03
3 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
4 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
5 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 8 01-11-028-01
6 Испытание цепи вторичной коммутации испыт. 8 01-12-029-01

ПНР регистратора аварийных событий (РАС)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Устройство автоматического осциллографирования с записью предаварийного режима (магнитограф) устр. 1 01-05-010-03
2 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 3 01-11-028-01
5 Испытание цепи вторичной коммутации испыт. 3 01-12-029-01

ПНР шкафа резервных защит и автоматики управления выключателем (АУВ)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Терминал дистанционной и токовой защиты линий компл. 1 01-04-033-03
2 Терминал автоматики управления выключателем компл. 1 01-05-026-09
3 Устройство резервирования отказа выключателя (УРОВ) при количестве присоединений до четырех (1 компл.) компл. 1 01-04-048-01
4 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
5 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
6 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 8 01-11-028-01
7 Испытание цепи вторичной коммутации испыт. 8 01-12-029-01

ПНР релейной защиты комплектного распределительного устройства (РЗ КРУ)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Двухфазная токовая отсечка и МТЗ с выдержкой времени (комплект КЗ-37) компл. 10 01-04-012-03
2 Устройство пуска МТЗ по напряжению компл. 3 01-04-005-01
3 Устройство резервирования отказа выключателя (УРОВ) при количестве присоединений до четырех (1 компл.) компл. 1 01-04-048-01
4 Устройство резервирования отказа выключателя (УРОВ) при количестве присоединений до четырех (1 компл.) компл. 6 01-04-048-01
5 Дуговая защита секций комплектных распределительных устройств (КРУ) с контролем по току компл. 2 01-04-063-02
6 Схема резервирования питания трехпроводной системы от другого источника питания с устройством релейно-контакторного переключателя схема 1 01-06-022-02
7 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 50 01-11-011-01
8 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 30 01-11-028-01
9 Испытание цепи вторичной коммутации испыт. 30 01-12-029-01

ПНР шкафа дифференциальной защиты шин (ДЗШ)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Дифференциальная защита шин при количестве присоединений до четырех с торможением компл. 1 01-04-021-03
2 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
3 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
4 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 8 01-11-028-01
5 Испытание цепи вторичной коммутации испыт. 8 01-12-029-01

ПНР шкафа высокочастотной защиты линии (ВЧ защит)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Высокочастотная защита направленная ПДЭ-2802 компл. 0,5 01-04-031-01
2 Дистанционная защита ЭПЗ-1636 компл. 1 01-04-032-01
3 Устройство блокировки при качаниях типа КРБ-125, КРБ-126 компл. 1 01-04-064-01
4 Устройство блокировки при неисправностях цепей напряжения типа КРБ-12, КРБ-13 компл. 1 01-04-064-02
5 Максимальная токовая защита направленная нулевой последовательности четырехступенчатая от замыканий на «землю» (комплект КЗ-10) компл. 1 01-04-013-05
6 Двухфазная токовая отсечка и МТЗ с выдержкой времени (комплект КЗ-37) компл. 1 01-04-012-03
7 Приемопередатчик для дифференциально-фазной или направленной дистанционной защиты линий ПВЗ, ПВЗ-90, ПВЗ-90М, ПВЗ-90М1 компл. 1 01-04-074-02
8 Сбор и реализация сигналов информации устройств защиты, автоматики электрических и технологических сигналов сигнал 10 01-10-001-01
9 Проверка наличия цепи между заземлителями и заземлёнными элементами точек 5 01-11-011-01
10 Измерение сопротивления изоляции мегаомметром кабельных и других линий напряжением до 1 кВ, предназначенных для передачи электроэнергии к распределительным устройствам, щитам, шкафам, коммутационным аппаратам и электропотребителям линия 8 01-11-028-01
11 Испытание цепи вторичной коммутации испыт. 8 01-12-029-01

Комплексное опробование


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Технологический комплекс, включающий агрегаты, связанные между собой непрерывным регулированием технологических параметров и взаимоконтролем режимов работы, в количестве до 30 шт. компл. 1 01-13-021-01..4
2 Комплекс ПА с количеством взаимосвязанных устройств до 5 шт. компл. 1 01-13-040-01

6. Ведомость ПНР оборудования АСУ ТП (ССПИ, телемеханики).

Мониторы АРМ дежурного

ПНР ССПИ (телемеханики)


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Автоматизированная система управления II категории технической сложности с количеством каналов (Кобщ) до 2560 шт. 1 02-01-002-01..20
2 Инсталляция и базовая настройка общего и специального программного обеспечения инст. 1 02-02-001-01
3 Функциональная настройка общего программного обеспечения, кол-во функций — 1 функц. 1 02-02-002-01
4 Функциональная настройка специального программного обеспечения, кол-во функций — 1 функц. 1 02-02-003-01
5 Автономная наладка АС II категории сложности сист. 1 02-02-004-02
6 Комплексная наладка АС II категории сложности сист. 1 02-02-005-02

ПНР АСУ ТП


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Автоматизированная система управления III категории технической сложности с количеством каналов (Кобщ) до 2560 шт. 1 02-01-003-01..20
2 Инсталляция и базовая настройка общего и специального программного обеспечения инст. 1 02-02-001-01
3 Функциональная настройка общего программного обеспечения, кол-во функций — 1 функц. 1 02-02-002-01
4 Функциональная настройка специального программного обеспечения, кол-во функций — 1 функц. 1 02-02-003-01
5 Автономная наладка АС III категории сложности сист. 1 02-02-004-02
6 Комплексная наладка АС III категории сложности сист. 1 02-02-005-02

7. Ведомость ПНР оборудования связи.

Шкафы связи

ПНР шкафа связи


пп
Наименование работ Ед. изм. Кол-во Расценка
1 Настройка простых сетевых трактов: 2 Мбит/сек. или 34 Мбит/сек., основной — тракт шт. 1 ФЕРм
10-06-068-10
2 Настройка простых сетевых трактов: 2 Мбит/сек. или 34 Мбит/сек., последующий — тракт шт. 2 ФЕРм
10-06-068-11
3 Электронная учрежденческо-производственная станция с цифровой коммутационной системой с количеством портов до 100: настройка станции — 100 номеров шт. 1 ФЕРм
10-03-031-03
4 Аппарат телефонный системы ЦБ или АТС: настольный — шт. шт. 1 ФЕРм
10-02-030-01

ВЫВОД

Абсолютной истины по вопросу, какой состав работ нужно прописать, чтобы этого было достаточно для включения оборудования в работу, до сих пор не существует. Информация, поступающая из различных источников, очень разрозненная и неструктурированная. Данной статьёй мы попытались заполнить этот пробел.

Изжившее себя или неиспользуемое на подстанции оборудование, такое как отделители, короткозамыкатели, мощные синхронные генераторы или компенсаторы, в статье не рассматривались. Объём работ для всех модификаций или разновидностей оборудования, не вошедших в наш перечень, предлагаем составлять на основе наиболее приближенного варианта.

Не забывайте о необходимости инструментальной проверки электромагнитной обстановки на подстанции в качестве финального этапа ПНР!

Оставляем за собой право корректировать данный материал по мере актуализации регламентирующих документов или запросов пользователей.

СЛУЧАИ ИЗ ПРАКТИКИ. Самой распространённой ошибкой в сметах на ПНР является задвоение объёмов. Например, принимается расценка на наладку силового трансформатора, а после неё идут расценки на испытание вводов и фазировка, работы в которых уже учтены первой расценкой.

Частой ошибкой также является неправильный подсчёт «количества». В частности, при измерениях изоляции кабелей или испытаниях автоматических выключателей ошибочно ведут подсчёт по количеству рассматриваемых единиц.

Обращаем внимание, что в общих положениях и вводных указаниях сборников [4], [5] можно найти информацию о том, что включают в себя те или иные расценки. Только проанализировав эту информацию, можно исключить задвоения по определённым видам работ.

Согласно большинству рекомендаций от производителей оборудования измерения и испытания целесообразно проводить для групп кабелей, но не по отдельности. А в соответствии с  п.1.8.37 ПУЭ [2] в электроустановках проверяются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 2% выключателей распределительных и групповых сетей.

Заказать программу ПНР можно через форму обратной связи

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

  • Энергетик
  • 30 сентября 2023

Стоимость проектирования

Подробнее

  • Энергетик
  • 28 апреля 2024

Выбор основного оборудования подстанции

Подробнее

1262

Стоимость проектирования

При получении технико-коммерческого предложения на выполнение того или иного проекта потенциальный заказчик часто задаётся следующим вопросом. Как сформировалась указанная сумма? Тем самым, просит обосновать стоимость проектирования.

Картинка с оплатой золотом за проекты

На этот главный вопрос попытаемся ответить в нашем новом материале, осветив существующие методики экономической оценки проекта. Помимо этого определим, насколько справедливы эти методики по отношению к проектировщику энергетической отрасли. И предложим своё решение проблемных вопросов.

СОДЕРЖАНИЕ:

  1. Смета на ПИР.
  2. Трудозатраты ПД.
  3. Оценка стадии РД.
  4. С чем связано несоответствие смет трудозатратам и почему пропорция 40/60 «не работает»?
  5. Каким способом можно улучшить ситуацию?
  6. Смета на ПИР и трудозатраты в новых условиях.

1. Смета на ПИР

Ввиду того, что любой проект — это, в большинстве своём, результат интеллектуального труда, то стоимость проектно-изыскательских работ (ПИР) принято оценивать трудозатратами, а обосновать её можно только сметой.

Существует несколько способов составления сметы на ПИР. Она может:

  • состоять из набора расценок на тот или иной вид проектных работ;
  • выводиться в процентном отношении от прогнозируемой укрупнённой стоимости строительства;
  • выводиться в процентном отношении от стоимости строительства объекта-аналога;
  • определяться на основе известной стоимости строительства;
  • содержать расчёт на основе трудозатрат.

У всех этих способов есть свои достоинства и недостатки. В нашей работе подробнее остановимся только на одном из них. Выполним расчёт проектирования на основе уже известной стоимости строительства.

НЕДОСТАТКИ ЭТОГО СПОСОБА:
  • он недостаточно объективен;
  • он не работает до окончания проектирования, а служит обоснованием стоимости ПИР при закрытии работ.
ЕГО ГЛАВНОЕ ДОСТОИНСТВО:
  • он справедлив по отношению ко всем участникам рабочего процесса.

Давайте рассмотрим пример.

Выполнен проект замены воздушных высоковольтных выключателей 110 кВ — на элегазовые. Такие проекты наиболее распространены в текущих реалиях обновления старого фонда подстанций, а их основной объём при проектировании можно найти в нашем прошлом материале⎘.

При составлении сметы на разработку ПД (для упрощения) учтён только сам процесс проектирования, без предпроектного обследования, инженерных изысканий и разработки закупочной документации, — для них предусматриваются отдельные сметы.

Итоговая стоимость в смете приведена ко 2-му кварталу текущего года.


п/п
Характеристика
предприятия, здания,
сооружения или виды
работ
Номер частей, глав, таблиц, процентов,
параграфов и пунктов указаний к разделу
СБЦ на проектные и изыскательские работы
для строительства
Расчет стоимости:
(a+bx)*Ki, или (объем
строительно-
монтажных работ) *
проц./ 100 или
количество x цена
Стоимость,
тыс. руб.
1 2 3 4 5
1 Открытые и закрытые
электрические подстанции
напряжением 35–1150 кВ

СБЦП 81-02-24-2001 Объекты энергетики.
Электросетевые объекты. 2016 г. Таблица 1.
Открытые и закрытые электрические
подстанции напряжением 35–1150 кВ

Стоимость строительства на основании ССРСС:
Сбаз (2000г.)=17,84886 млн.руб;
Сбаз (2001г.)=17, 84886*1,25= 22,31108 млн.руб

Кст=0,4 (проектная документация)

α = С * (αпред - ((αпред -
αслед) / (Сслед - Спред))
* (С - Спред)) / 100 *
Куд ст * K1 = 7,4849%

Спд =
22311,08*7,4849%*0,4 =

667,98481
2 Итого стоимость проектных работ в базовых ценах 2001 года 667,98481
3 Перевод в текущие цены

Индекс на II квартал 2023 года на проектные
работы к уровню цен на 01.01.2001 (письмо
Минстроя России №24756-ИФ/09 от
02.05.2023г):

К=5,42

С = 667,98481*5,42 = 3620,47767
4 Итого стоимость проектных работ в текущих ценах 2023 года 3620,47767

Стоимость составила 3,62 млн. рублей без НДС

2. Трудозатраты ПД

Как уже было сказано, объективно оценить работу проектировщика можно только трудозатратами.

Продолжим пользоваться примером.

В таблице 2 в отдельные этапы выделены разработка и согласование ПД, а также сопровождение экспертизы. Здесь участвуют непосредственные исполнители работ, кроме этого сотрудники, выполняющие проверку и нормоконтроль. 20 рабочих дней в таблице составляют календарный месяц (принято условно); соответственно, 60 дней — это 3 календарных месяца.

Прочие расходы обычно отражают затраты на выпуск документации, внеплановый выезд на объект и непредвиденные затраты. Накладные включают в себя административно-хозяйственные расходы (оплата труда административно-хозяйственного персонала, работников аппарата управления, расходы на установку программных средств, эксплуатацию и сервисное обслуживание компьютерной техники и т.д.), расходы на обслуживание работников, платежи по кредитам и прочее. Рентабельность подразумевает получение выгоды от процесса проектирования.


п/п
Наименование работы Должность Ставка Трудозатраты Зарплата Налоги Итого стоимость
проектных работ
(расход)
в днях в часах
1 2 3 4 5 6 7 8 9
Разработка проектной документации (3 мес)
1 Пояснительная записка ГИП 60 000 10 80 30 000 12 900 42 900
2 Конструктивные решения Вед. инженер ПГС 45 000 30 240 67 500 29 025 96 525
3 Электротехнические решения.
Силовое оборудование
Нач. отдела ЭС 60 000 10 80 30 000 12 900 42 900
4 Инженер ЭС 35 000 30 240 52 500 22 575 75 075
5 Электротехнические решения.
Система собственных нужд
Нач. отдела ЭС 60 000 10 80 30 000 12 900 42 900
6 Инженер ЭС 35 000 20 160 35 000 15 050 50 050
7 Релейная защита и автоматика Нач. отдела РЗА 60 000 20 160 60 000 25 800 85 800
8 Инженер РЗА 35 000 40 320 70 000 30 100 100 100
9 Система сбора и передачи
информации
Вед. инженер АСУ 45 000 30 240 67 500 29 025 96 525
10 Метрологическое обеспечение Вед. инженер АСУ 45 000 5 40 11 250 4 838 16 088
11 Электромагнитная
совместимость
ГИП 60 000 5 40 15 000 6 450 21 450
12 Заземление и молниезащита Инженер ЭС 35 000 5 40 8 750 3 763 12 513
13 Проект организации
строительства
Вед. инженер ПГС 45 000 20 160 45 000 19 350 64 350
14 Мероприятия по охране
окружающей среды
Вед. инженер-эколог 45 000 10 80 22 500 9 675 32 175
15 Мероприятия по обеспечению
пожарной безопасности
Вед. инженер ПБ 45 000 10 80 22 500 9 675 32 175
16 Сметная документация Вед. инженер-сметчик 45 000 40 320 90 000 38 700 128 700
17 Балансы и режимы Вед. инженер-расчётчик 45 000 40 320 90 000 38 700 128 700
18 Организация эксплуатации ГИП 60 000 5 40 15 000 6 450 21 450
19 Эффективность инвестиций Вед. экономист 45 000 10 80 22 500 9 675 32 175
20 Система информационной
безопасности
Вед. инженер АСУ 45 000 20 160 45 000 19 350 64 350
21 Ликвидация опасного
производственного объекта
Вед. инженер ПГС 45 000 10 80 22 500 9 675 32 175
Итого по разделу: 380 3 040 852 500 366 575 1 219 075
Согласование проектной документации (1 мес)
22 Пояснительная записка ГИП 60 000 10 80 30 000 12 900 42 900
23 Конструктивные решения Вед. инженер ПГС 45 000 10 80 22 500 9 675 32 175
24 Электротехнические решения.
Силовое оборудование
Нач. отдела ЭС 60 000 5 40 15 000 6 450 21 450
25 Инженер ЭС 35 000 10 80 17 500 7 525 25 025
26 Электротехнические решения.
Система собственных нужд
Нач. отдела ЭС 60 000 5 40 15 000 6 450 21 450
27 Инженер ЭС 35 000 10 80 17 500 7 525 25 025
28 Релейная защита и автоматика Нач. отдела РЗА 60 000 5 40 15 000 6 450 21 450
29 Инженер РЗА 35 000 10 80 17 500 7 525 25 025
30 Система сбора и передачи
информации
Вед. инженер АСУ 45 000 10 80 22 500 9 675 32 175
31 Проект организации
строительства
Вед. инженер ПГС 45 000 20 160 45 000 19 350 64 350
32 Сметная документация Вед. инженер-сметчик 45 000 20 160 45 000 19 350 64 350
33 Балансы и режимы Вед. инженер-расчётчик 45 000 10 80 22 500 9 675 32 175
Итого по разделу: 125 1 000 285 000 122 550 407 550
Экспертиза
34 Сопровождение экспертизы ГИП 60 000 10 80 30 000 12 900 42 900
35 Вед. инженер ПГС 45 000 20 160 45 000 19 350 64 350
36 Вед. инженер-сметчик 45 000 20 160 45 000 19 350 64 350
Итого по разделу: 50 400 120 000 51 600 171 600
37 Прочие расходы 150 000
38 Накладные расходы по ставке 85% 1 655 991
Всего себестоимость работ 3 604 216
39 Рентабельность по ставке 17% от себестоимости 612 717
ИТОГО, руб. 4 216 933

Объём проектирования определён, в первую очередь, Положением [1], во вторую — техническим заданием заказчика, в третью — опытом. Продолжительность проектирования отражает реальное время выполнения работ, но не превышает нормируемого СТО Россетей [2].

Что можно здесь увидеть? Количество позиций в таблице наглядно показывает — насколько трудоёмким является проектирование на этапе ПД. Зарплаты сотрудников не выдерживают никакой конкуренции на рынке труда. Анализ последних строк таблиц 1 и 2 демонстрирует, что организация на этом проекте ничего не заработала. А загрузку персонала при работе над проектом пришлось оптимизировать, сокращая время участия специалистов в пользу других проектов.

3. Оценка стадии РД

При внимательном изучении сметы на ПИР можно обратить внимание на стадийный коэффициент Кст. Для ПД он принимается равным 0,4 (то есть 40% от итоговой стоимости), для РД — 0,6. Эти значения закреплены многими справочниками и методическими указаниями (не будем их приводить в нашем материале) и подразумевают, что трудоёмкость на стадии ПД в 1,5 раза меньше трудоёмкости на стадии РД.

Выясним: так ли это в нашем примере.

Начнём со сметы.


п/п
Характеристика
предприятия, здания,
сооружения или виды
работ
Номер частей, глав, таблиц, процентов,
параграфов и пунктов указаний к разделу
СБЦ на проектные и изыскательские работы
для строительства
Расчет стоимости:
(a+bx)*Ki, или (объем
строительно-
монтажных работ) *
проц./ 100 или
количество x цена
Стоимость,
тыс. руб.
1 2 3 4 5
1 Открытые и закрытые
электрические подстанции
напряжением 35–1150 кВ

СБЦП 81-02-24-2001 Объекты энергетики.
Электросетевые объекты. 2016 г. Таблица 1.
Открытые и закрытые электрические
подстанции напряжением 35–1150 кВ

Стоимость строительства на основании ССРСС:
Сбаз (2000г.)=17,84886 млн.руб;
Сбаз (2001г.)=17, 84886*1,25= 22,31108 млн.руб

Кст=0,6 (рабочая документация)

α = С * (αпред - ((αпред -
αслед) / (Сслед - Спред))
* (С - Спред)) / 100 *
Куд ст * K1 = 7,4849%

Спд =
22311,08*7,4849%*0,6 =

1 001,97722
2 Итого стоимость проектных работ в базовых ценах 2001 года 1 001,97722
3 Перевод в текущие цены

Индекс на II квартал 2023 года на проектные
работы к уровню цен на 01.01.2001 (письмо
Минстроя России №24756-ИФ/09 от
02.05.2023г):

К=5,42

С = 1001,97722*5,42 = 5 430,71653
4 Итого стоимость проектных работ в текущих ценах 2023 года 5 430,71653

Как и предполагалось, стоимость проектирования выросла в 1,5 раза и уже составляет 5,43 млн. рублей без НДС. Напомним — это без учёта ПД.


п/п
Наименование работы Должность Ставка Трудозатраты Зарплата Налоги Итого стоимость
проектных работ
(расход)
в днях в часах
1 2 3 4 5 6 7 8 9
Разработка рабочей документации (4 мес)
1 Общее руководство и
взаимодействие
ГИП 60 000 80 640 240 000 103 200 343 200
2 Архитектурно-строительные
решения
Вед. инженер ПГС 45 000 80 640 180 000 77 400 257 400
3 Электротехнические решения.
Силовое оборудование
Нач. отдела ЭС 60 000 30 240 90 000 38 700 128 700
4 Инженер ЭС 35 000 40 320 70 000 30 100 100 100
5 Электротехнические решения.
Система собственных нужд
Нач. отдела ЭС 60 000 30 240 90 000 38 700 128 700
4 Инженер ЭС 35 000 40 320 70 000 30 100 100 100
7 Релейная защита и автоматика Нач. отдела РЗА 60 000 60 480 180 000 77 400 257 400
8 Инженер РЗА 35 000 80 640 140 000 60 200 200 200
9 Система сбора и передачи
информации
Вед. инженер АСУ 45 000 60 480 135 000 58 050 193 050
10 Сметная документация Вед. инженер-сметчик 45 000 40 320 90 000 38 700 128 700
11 Система информационной
безопасности
Вед. инженер АСУ 45 000 20 160 45 000 19 350 64 350
Итого по разделу: 560 4 480 1 330 000 571 900 1 901 900
Согласование рабочей документации (1 мес)
12 Общее руководство и
взаимодействие
ГИП 60 000 20 160 60 000 25 800 85 800
13 Архитектурно-строительные
решения
Вед. инженер ПГС 45 000 20 160 45 000 19 350 64 350
14 Электротехнические решения.
Силовое оборудование
Нач. отдела ЭС 60 000 5 40 15 000 6 450 21 450
15 Инженер ЭС 35 000 20 160 35 000 15 050 50 050
16 Электротехнические решения.
Система собственных нужд
Нач. отдела ЭС 60 000 5 40 15 000 6 450 21 450
17 Инженер ЭС 35 000 10 80 17 500 7 525 25 025
18 Релейная защита и автоматика Нач. отдела РЗА 60 000 5 40 15 000 6 450 21 450
19 Инженер РЗА 35 000 20 160 35 000 15 050 50 050
20 Система сбора и передачи
информации
Вед. инженер АСУ 45 000 20 160 45 000 19 350 64 350
21 Сметная документация Вед. инженер-сметчик 45 000 20 160 45 000 19 350 64 350
Итого по разделу: 145 1 160 327 500 140 825 468 325
22 Прочие расходы 150 000
23 Накладные расходы по ставке 85% 2 142 191
Всего себестоимость работ 4 662 416
24 Рентабельность по ставке 17% от себестоимости 792 611
ИТОГО, руб. 5 455 027

Что мы имеем здесь? Время на разработку документации увеличилось, и этому есть основание в СТО [2]. Количество людей, участвующих в проекте, сократилось, так как сократилось количество документов на выходе. Что в совокупности сказалось на итоговых результатах себестоимости проекта: организация смогла заработать в данном случае. Но зарплаты сотрудников остались на том же уровне.

4. С чем связано несоответствие смет трудозатратам и почему пропорция 40/60 «не работает»?

Если рассматривать процесс проектирования в целом, то можно отметить следующее. При распределении денег по стадиям в пропорции 40/60 предполагается, что проектировщик в ПД учтёт все принципиальные моменты, отразит в документах укрупнённые решения, а детальная проработка будет выполнена на этапе РД. Но на практике это не отражает текущее положение дел. Всё выглядит совсем по-иному.

Попытаемся детально разобраться в самом проблемном вопросе. Откуда возникли такие трудозатраты на этапе ПД?

Пойдём по порядку:

  • требования к пояснительной записке значительно расширились в последней редакции Положения [1], а большинство заказчиков стало внимательнее относиться к соответствию этого документа нормам;
  • в рамках электротехнических решений появились дополнительные требования по оформлению электрической схемы в специальном программном комплексе;
  • у инженера РЗА появилась проверка трансформаторов тока на перемагничивание, что связывают с аварийными случаями при неправильной их работе;
  • инженер АСУ теперь выполняет раздел по информационной безопасности;
  • в разы усложнился процесс разработки смет после введения Методики [3];
  • даже предпроектное обследование необходимо оформлять по особому регламенту, на что уходит большее количество времени.

И что из указанного требует более детальной проработки на этапе РД? Правильный ответ: ничего!

5. Каким способом можно улучшить ситуацию?

Поведённый анализ показывает, что какой-то показатель (или показатели) вносит существенную погрешность в расчёты, что на выходе не даёт свести дебет с кредитом. И так быть не должно. Попытаемся выявить «предателя».

Улучшить эффективность человеческого труда, перейти на труд искусственного интеллекта и уменьшить объём проектирования — вряд ли возможно в ближайшее время. Значит, на итоговую стоимость трудозатрат повлиять мы уже не можем.

Обратимся к сметам. Методика расчёта, включая базовые расценки и пропорции, остаётся неизменной на протяжении многих лет. А такой показатель, как индекс изменения сметной стоимости для перевода в текущие цены, является переменной величиной. Он увеличивается (что не всегда) ежеквартально директивными письмами Минстроя России. Посмотрим внимательнее на его рост в разрезе лет.

Изменение индекса показано на графике сплошной синей линией — наведите на условное обозначение вверху и она подсветится. Инфляция (на основе официальных данных) обозначена красным цветом, и можно увидеть как она, на рубеже 2014-2015 годов, «вырывается вперёд» нашего индекса. Ввиду того, что при оценке интеллектуального труда инфляция всё же не всегда является объективным показателем, на график добавлена третья переменная (также из официальной статистики). Эта переменная — средняя номинальная заработная плата — обозначена зелёной восходящей кривой. На основе двух этих показателей мы и достроили новую ветвь — она показана пунктирной синей линией. Итоговое значение на пике этой ветви оказывается равным 13,5. Его и применим в дальнейших расчётах, чтобы доказать состоятельность этого, пока ещё мифического индекса.

6. Смета на ПИР и трудозатраты в новых условиях.

Меняем коэффициент К в строке 3 (с 5,42 на 13,5) и получаем итоговое значение около 9 млн. рублей, вместо 3,62, полученных ранее.


п/п
Характеристика
предприятия, здания,
сооружения или виды
работ
Номер частей, глав, таблиц, процентов,
параграфов и пунктов указаний к разделу
СБЦ на проектные и изыскательские работы
для строительства
Расчет стоимости:
(a+bx)*Ki, или (объем
строительно-
монтажных работ) *
проц./ 100 или
количество x цена
Стоимость,
тыс. руб.
1 2 3 4 5
1 Открытые и закрытые
электрические подстанции
напряжением 35–1150 кВ

СБЦП 81-02-24-2001 Объекты энергетики.
Электросетевые объекты. 2016 г. Таблица 1.
Открытые и закрытые электрические
подстанции напряжением 35–1150 кВ

Стоимость строительства на основании ССРСС:
Сбаз (2000г.)=17,84886 млн.руб;
Сбаз (2001г.)=17, 84886*1,25= 22,31108 млн.руб

Кст=0,4 (проектная документация)

α = С * (αпред - ((αпред -
αслед) / (Сслед - Спред))
* (С - Спред)) / 100 *
Куд ст * K1 = 7,4849%

Спд =
22311,08*7,4849%*0,4 =

667,98481
2 Итого стоимость проектных работ в базовых ценах 2001 года 667,98481
3 Перевод в текущие цены

Индекс на II квартал 2023 года на проектные
работы к уровню цен на 01.01.2001:

К=13,5

С = 667,98481*13,5 = 9 017,79494
4 Итого стоимость проектных работ в текущих ценах 2023 года 9 017,79494

Эффективно распределяем трудозатраты по исполнителям, позволив им качественнее поработать с проектом. Но не выходим за пределы обозначенных сроков [2].


п/п
Наименование работы Должность Ставка Трудозатраты Зарплата Налоги Итого стоимость
проектных работ
(расход)
в днях в часах
1 2 3 4 5 6 7 8 9
Разработка проектной документации (3 мес)
1 Пояснительная записка ГИП 130 000 20 160 130 000 55 900 185 900
2 Конструктивные решения Вед. инженер ПГС 80 000 40 320 160 000 68 800 228 800
3 Электротехнические решения.
Силовое оборудование
Нач. отдела ЭС 120 000 10 80 60 000 25 800 85 800
4 Инженер ЭС 60 000 30 240 90 000 38 700 128 700
5 Электротехнические решения.
Система собственных нужд
Нач. отдела ЭС 120 000 10 80 60 000 25 800 85 800
6 Инженер ЭС 60 000 20 160 60 000 25 800 85 800
7 Релейная защита и автоматика Нач. отдела РЗА 120 000 20 160 120 000 51 600 171 600
8 Инженер РЗА 60 000 40 320 120 000 51 600 171 600
9 Система сбора и передачи
информации
Вед. инженер АСУ 80 000 30 240 120 000 51 600 171 600
10 Метрологическое обеспечение Вед. инженер АСУ 80 000 10 80 40 000 17 200 57 200
11 Электромагнитная
совместимость
Вед. инженер ЭМС 80 000 20 160 80 000 34 400 114 400
12 Заземление и молниезащита Инженер ЭС 60 000 10 80 30 000 12 900 42 900
13 Проект организации
строительства
Вед. инженер ПГС 80 000 30 240 120 000 51 600 171 600
14 Мероприятия по охране
окружающей среды
Вед. инженер-эколог 80 000 20 160 80 000 34 400 114 400
15 Мероприятия по обеспечению
пожарной безопасности
Вед. инженер ПБ 80 000 20 160 80 000 34 400 114 400
16 Сметная документация Вед. инженер-сметчик 80 000 60 480 240 000 103 200 343 200
17 Балансы и режимы Вед. инженер-расчётчик 80 000 40 320 160 000 68 800 228 800
18 Организация эксплуатации ГИП 130 000 10 80 65 000 27 950 92 950
19 Эффективность инвестиций Вед. экономист 80 000 20 160 80 000 34 400 114 400
20 Система информационной
безопасности
Вед. инженер АСУ 80 000 20 160 80 000 34 400 114 400
21 Ликвидация опасного
производственного объекта
Вед. инженер ПГС 80 000 20 160 80 000 34 400 114 400
Итого по разделу: 500 4 000 2 055 000 883 650 2 938 650
Согласование проектной документации (1 мес)
22 Пояснительная записка ГИП 130 000 10 80 65 000 27 950 92 950
23 Конструктивные решения Вед. инженер ПГС 80 000 10 80 40 000 17 200 57 200
24 Электротехнические решения.
Силовое оборудование
Нач. отдела ЭС 120 000 5 40 30 000 12 900 42 900
25 Инженер ЭС 60 000 10 80 30 000 12 900 42 900
26 Электротехнические решения.
Система собственных нужд
Нач. отдела ЭС 120 000 5 40 30 000 12 900 42 900
27 Инженер ЭС 60 000 10 80 30 000 12 900 42 900
28 Релейная защита и автоматика Нач. отдела РЗА 120 000 5 40 30 000 12 900 42 900
29 Инженер РЗА 60 000 10 80 30 000 12 900 42 900
30 Система сбора и передачи
информации
Вед. инженер АСУ 80 000 10 80 40 000 17 200 57 200
31 Проект организации
строительства
Вед. инженер ПГС 80 000 20 160 80 000 34 400 114 400
32 Сметная документация Вед. инженер-сметчик 80 000 20 160 80 000 34 400 114 400
33 Балансы и режимы Вед. инженер-расчётчик 80 000 10 80 40 000 17 200 57 200
Итого по разделу: 125 1 000 525 000 225 750 750 750
Экспертиза
34 Сопровождение экспертизы ГИП 130 000 10 80 65 000 27 950 92 950
35 Вед. инженер ПГС 80 000 20 160 80 000 34 400 114 400
36 Вед. инженер-сметчик 80 000 20 160 80 000 34 400 114 400
Итого по разделу: 50 400 225 000 96 750 321 750
37 Прочие расходы 150 000
38 Накладные расходы по ставке 85% 3 536 978
Всего себестоимость работ 7 698 128
39 Рентабельность по ставке 17% от себестоимости 1 308 682
ИТОГО, руб. 9 006 809

В итоге: затраты на проектирование сошлись со сметным расчётом, проектная организация отработала с рентабельностью, а заработная плата сотрудников в среднем выросла почти в два раза.

ВЫВОД напрашивается сам собой: необходим пересмотр индексов на ПИР с кратным увеличением в большую сторону!

В качестве защиты такого решения можем обратиться к опыту прошлых лет, когда были пересмотрены методики оценки строительно-монтажных и пусконаладочных работ, а индексы увеличены в разы. Сейчас те индексы, имеющие когда-то сопоставимые значения с ПИР, достигают 30. Конечно, это не говорит о том, что монтажник при реализации текущего проекта заработает в 5-6 раз больше, чем проектировщик. Это подразумевает лишь то, что стоимость интеллектуального труда (в абсолютных величинах) за последние 23 года выросла в 5,5 раз, в то время как стоимость физического — в 30.

Упомянем также, что распределение по принципу 40/60 далеко не всегда отражает действительность.

Работа на стадии РД оказывается более рентабельной. При разработке документации удаётся уложиться в лимит. Работы выполняются в соответствии с регламентом (с полной загрузкой персонала согласно обозначенным срокам). Организация получает свою выгоду от этого проекта, но увеличить зарплату сотрудникам не удаётся.

При трёхстадийном проектировании процесс становится заведомо нерентабельным, так как отдельную смету на ОТР не составляют, а эти затраты автоматически отражаются в стоимости ПД. Последняя же, как показал наш анализ, не выдерживает никакой критики.

Поможем расчитать стоимость проекта через форму обратной связи на сайте

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

  • Энергетик
  • 13 января 2023

Противоречия в энергетике

Подробнее

  • Энергетик
  • 11 февраля 2023

О сложностях проектирования

Подробнее

1380

Солнечная энергия – самый перспективный источник на Земле

Запасы солнечной энергии на нашей планете неиссякаемы, а солнечная энергетика в настоящий момент становится самым быстрорастущим и наиболее перспективным направлением электроэнергетики. Учёные всего мира изо дня в день совершенствуют способы преобразования солнечной энергии в электрическую для возможности неограниченного её использования.

Солнечная электростанция

Какие существуют способы преобразования солнечной энергии, какова эффективность самого распространённого из них, насколько велико текущее её состояние и куда заведёт нас эпоха вездесущей солнечной энергии — рассмотрим в нашем новом материале.

СОДЕРЖАНИЕ:

  1. Преобразование солнечной энергии.
  2. Эффективность солнечных панелей.
  3. Текущее состояние солнечной энергетики.
  4. Деление на сегменты.
  5. Совокупная установленная мощность.
  6. Развитие солнечной энергетики.
  7. Уровень проникновения.
  8. Поддержка на государственном уровне.
  9. Цели перехода на солнечную энергию.
  10. Стоимость солнечной энергии.
  11. Хранилища энергии.
  12. Передача энергии.
  13. Утилизация.

1. Преобразование солнечной энергии

Помимо всем известных солнечных панелей, преобразующих солнечный свет напрямую в электричество, мы знаем также солнечные коллекторы, солнечные вакуумные трубки [1] и солнечные реакторы [2], вырабатывающие тепло. Наверняка изобретены и другие устройства, эффективность которых ещё нужно доказать.

Солнечные трубки

2. Эффективность солнечных панелей

Эффективность, или КПД, солнечных элементов — это показатель количества энергии, которое способна преобразовать установка из солнечной радиации.

Поступает разрозненная информация об уровне эффективности того или иного устройства, а также способах её расчёта — на текущий момент принято считать достигнутым значение около 25% [3]. Это совсем немного. И можно только догадываться, когда мы сможем достичь значений, достойных гордости.

Лампу накаливания, получившую распространение на рубеже 19-20 веков, и имеющую эффективность 3-5%, мы смогли заменить светодиодами с КПД 90% лишь в текущем десятилетии.

3. Текущее состояние солнечной энергетики

Глобальная фотоэлектрическая база значительно выросла в 2022 году, достигнув почти 1,2 ТВт совокупной мощности. Из них, согласно отчёту [4]:

  • китайский рынок продолжает доминировать, как по вводимой, так и по совокупной мощности, и добавил 106 ГВт, получив 414,5 ГВт совокупной мощности;
  • Европа продемонстрировала уверенный рост с введённой мощностью 39 ГВт, во главе с Испанией (8,1 ГВт), Германией (7,5 ГВт), Польшей (4,9 ГВт) и Нидерландами (3,9 ГВт);
  • мощности в США выросли на стабильные 18,6 ГВт;
  • Индия продемонстрировала сильный рост с 18,1 ГВт;
  • Бразилия установила высокие 9,9 ГВт, что почти вдвое превышает новые мощности предыдущего года;
  • Япония осталась неизменной на уровне 6,5 ГВт, как и в 2021 году
График

4. Деление на сегменты

По итогам 2022 года значительно выросли как крышные, так и коммунальные сегменты. Если в предыдущие годы количество солнечных панелей, размещаемых на крышах домов, было в разы меньше коммунальных электростанций, то в прошлом — они подровнялись. Теперь 48% новых мощностей приходится на крышные.

Также растут новые сегменты солнечной энергетики, такие как плавающие фотоэлектрические системы и интегрированные в транспортные средства.

Плавучая фотоэлектрическая электростанция

5. Совокупная установленная мощность

Как уже было сказано, совокупная установленная мощность преодолела символическую отметку в 1 ТВт, достигнув 1 185 ГВт. Лидеры, от Китая до Индии и Германии (67,2 ГВт), имеют значительное превосходство относительно других: их позиции вряд ли будут оспорены в 2023 или 2024 году.

График

В России по итогам 2022 года общая мощность солнечных электростанций составила 1,8 ГВт, что в десятки раз меньше не только установленных мощностей указанных выше стран, но и новых мощностей в Китае за один лишь месяц.

К середине текущего календарного года Китай уже достиг отметки в 470 ГВт.

6. Развитие солнечной энергетики

Солнечная энергетика сейчас развивается намного быстрее, чем любая другая энергетическая технология в истории [5].

График

Сектор растёт примерно на 20% в год. Если так будет продолжаться, мы достигнем 6 ТВт примерно к 2031 году — это будет больше, чем совокупная мощность угля, газа, атомной энергии и гидроэнергетики. А к 2050 году рынок вырастет до 9,5 ТВт.

На данный момент солнечная энергия ещё уступает своему главному конкуренту среди возобновляемых источников, гидроэнергетике, но по наращиванию объёмов, по внедрению новых технологий, доступности и доверию инвесторов уже вырвалась в лидеры.

7. Уровень проникновения

Уровень проникновения подразумевает вклад солнечной энергетики в общую выработку системы. По этому показателю Испания — мировой лидер.

График

Ожидается, что по итогам текущего 2023 года более половины электроэнергии в Испании будет производиться из возобновляемых источников энергии [6].

Уровень проникновения солнечной энергетики в России составляет 0,79%. Для сравнения, у гидроэнергетики этот показатель равен 20%.

8. Поддержка на государственном уровне

Так как «солнечное» направление ещё является развивающимся, то без государственных субсидий не обходится ни одна страна. Исключениями оказываются лишь Китай и Австралия, в которых постепенно уходят от механизмов поддержки конечных пользователей, а фотоэлектрическая энергия становится конкурентоспособной и независимой.

9. Цели перехода на солнечную энергию

Активное развитие солнечной энергетики должно привести нас к следующим благоприятным последствиям:

  • уменьшится негативное воздействие на флору и фауну (помимо парниковых газов, мы избавимся от автомобильных выхлопов, дымовых труб, городского смога, угольных шахт, золоотвалов и разливов нефти);
  • повысится эффективность преобразования энергии (электричество, как правило, гораздо более эффективно производит энергию, чем любой другой источник);
  • снизится стоимость производства энергии.

10. Стоимость солнечной энергии

Ожидается [7], что стоимость солнечной энергии достигнет 30 долларов за МВтч к 2050 году и станет самым дешёвым источником.

Для сравнения, в 2023 году стоимость электроэнергии в развитых странах мира превышает 100 долларов за МВтч, а в России составляет 50-60 долларов за МВтч (в зависимости от курса).

11. Хранилища энергии

ГАЭС в настоящее время поддерживают большую часть мощностей энергосистемы, но в будущем их доля снизится. Аккумуляторы придут им на смену: либо в качестве автономных, либо в конфигурациях «солнечная батарея + аккумулятор», либо «автомобиль — сеть».

Аккумуляторное хранилище

12. Передача энергии

Ввиду масштабов наращивания мощностей остро стоит вопрос передачи всей этой энергии на расстояния. Решить проблему помогут:

  • интеллектуальное управление сетями, включая передачу энергии напрямую от местного источника — конечному потребителю;
  • развитие сверхпроводников;
  • перевод сетей высокого напряжения переменного тока HVAC — в постоянный HVDC.

13. Утилизация

Сегодня оптимальным сроком службы солнечных панелей считается срок в 15 лет. Но это не значит, что через 15 лет они перестают производить энергию. Это говорит, лишь о том, что эффективность их падает и с экономической точки зрения целесообразно их заменить. А что делать со старыми панелями?

Утилизация панелей — непростая, но решаемая задача. Типичная солнечная панель состоит из алюминия, стекла, кремния, пластика, а также меди, серебра и небольшого количества свинца. Слои хорошо соединены вместе, чтобы сделать панели устойчивыми к атмосферным воздействиям, что усложняет процесс разборки на составляющие. Тем не менее, вредных примесей в них нет, а ограничивают процесс повторного применения материалов только отсутствие в этом выгоды.

ВЫВОД

Электричество, электричество и снова электричество! Для чего нам столько электричества?.

Электрификация в XXI веке предполагает следующее:

  • электромобили заменяют обычные автомобили с ДВС;
  • электрические тепловые насосы заменяют газовые и водонагреватели в домах и на предприятиях;
  • электрические печи заменяют газовые горелки на заводах и ТЭЦ;
  • использование зелёного водорода в промышленном масштабе позволит экологически чисто производить аммиак, металлы, пластмассы и другие необходимые человечеству материалы.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:

  1. Солнечные вакуумные трубки на крыше, которые производят электричество и тепло, будут построены в США. Майк Бреннан. Опубликовано: Mitchnews.com⎘.
  2. Солнечная водородная система, которая совместно генерирует тепло и кислород. Селия Лютербахер, Федеральная политехническая школа Лозанны. Опубликовано: Techxpore.com⎘.
  3. Перовскитные солнечные элементы установили новый мировой рекорд эффективности преобразования энергии. Национальный университет Сингапура. Опубликовано: Techxpore.com⎘.
  4. Внедрение солнечных батарей в мире. Международное энергетическое агентство. 2023⎘.
  5. В отчаянии от изменения климата? Эти четыре графика неудержимого роста солнечной энергетики могут изменить ваше мнение. Эндрю Блейкерс, The Conversation. Опубликовано: Techxpore.com⎘.
  6. Испания получит +50% электроэнергии из возобновляемых источников энергии в 2023 году. Закари Шахан. Опубликовано: Cleantechnica.com⎘.
  7. Солнечная энергия займёт «неприступную позицию» самого дешёвого источника электроэнергии. Райан Кеннеди. Опубликовано: pv-magazine.com⎘.

Присоединяйтесь, чтобы не пропустить самое важное

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

  • Энергетик
  • 13 января 2023

Противоречия в энергетике

Подробнее

  • Энергетик
  • 20 декабря 2023

База знаний на Энергетик.ру. Руководство пользователя

Подробнее

680

Электротехнические решения. Объём проектирования в составе РД

Представим, что у Вас на руках согласованная и прошедшая экспертизу (что необязательно) проектная документация (ПД). В каком направлении нужно двигаться, чтобы выдать заказчику рабочую документацию (РД) по этому проекту? Что она должна включать в себя и чем будет отличаться от проектной? Разберём в этой статье.

Разрез ячейки 110 киловольт

РД, в первую очередь, выполняется для:

  • определения потребности в оборудовании и материалах;
  • производства строительно-монтажных работ;
  • уточнения сметной стоимости строительства (при необходимости).

Если на этапе ПД документация выполнена качественно и учтены все рекомендации нормативных документов (см. предыдущий материал⎘), предлагаем пошаговую инструкцию для завершающей стадии проекта.

СОДЕРЖАНИЕ:

  1. Общие указания.
  2. Схема электрическая принципиальная ПС.
  3. План ПС.
  4. План заземления.
  5. Схема установки оборудования.
  6. План и разрез ячеек.
  7. Прочие листы графической части.
  8. Оформление ссылочных и прилагаемых документов.
  9. Кабельный журнал.
  10. Спецификация оборудования, изделий и материалов.
  11. Опросные листы на оборудование.
  12. Расчёты.

ТЕКСТОВАЯ ЧАСТЬ:

1. Общие указания

Текстовая часть в томе РД, как правило, занимает незначительное место.

В общих указаниях, в соответствии с ГОСТ [1] и Требованиями [2], приводят:

  • сведения о документах, на основании которых принято решение о разработке РД (например, задание на проектирование, утверждённая ПД);
  • запись о соответствии РД заданию на проектирование, выданным техническим условиям (при наличии таковых), прочим НТД;
  • перечень нормативных документов, на которые даны ссылки в рабочих чертежах;
  • абсолютную отметку, принятую в рабочих чертежах здания или сооружения условно за нулевую;
  • запись о результатах проверки на патентоспособность и патентную чистоту (при необходимости);
  • перечень видов работ, для которых необходимо составление актов освидетельствования скрытых работ;
  • сведения о том, кому принадлежит данная интеллектуальная собственность (при необходимости);
  • эксплуатационные требования, предъявляемые к проектируемому зданию или сооружению (при необходимости);
  • другие необходимые указания.

В общих указаниях не следует повторять технические требования, помещённые на других листах основного комплекта рабочих чертежей, и давать описание принятых в рабочих чертежах технических решений.

Согласно ГОСТ [1] в перечень нормативных документов Общих указаний не включают документы, записанные в ведомость ссылочных и прилагаемых документов.

ГРАФИЧЕСКАЯ ЧАСТЬ:

2. Схема электрическая принципиальная ПС

Электрическая схема в составе РД должна соответствовать тем же правилам, что указаны⎘ для ПД. Исключением может служить лишь необходимость отображения конкретных марок оборудования в табличных формах на листе.

3. План ПС

План подстанции принципиально не должен отличаться от выполненного⎘ на этапе ПД. Рекомендуемый масштаб для отображения подстанции: 1:50, 1:100, 1:200, 1:500; допускается: 1:800, 1:1000. Ведомость оборудования на плане выполняют по форме 10 ГОСТ [3].

4. План заземления

Контур заземления подстанции наносится на план фундаментов. Схема внутреннего заземления здания отображается на планировке здания.

На схеме заземления должно быть отражено:

  • вертикальные заземлители в виде окружностей диаметром 3-5 мм;
  • горизонтальные заземлители в виде пунктирной или штрихпунктирной линии;
  • заземляющие проводники, проложенные по кратчайшему расстоянию от оборудования или сооружений, в виде пунктирной или штрихпунктирной линии;
  • условные обозначения элементов заземляющего устройства (ЗУ);
  • спецификация (ведомость) элементов ЗУ;
  • в примечаниях указывается ссылка на нормативный документ, в соответствии с которым выполнены расчёты, допустимое сопротивление заземляющего устройства, глубина прокладки в земле и отступ горизонтального заземлителя и заземляющих проводников от фундаментов, требование к выполнению соединений (сваркой «внахлёст») и их защита от коррозии, выполнение дополнительной защиты заземляющих проводников от коррозии в местах вывода из земли, материал для засыпки траншеи и необходимость трамбования.

ЗУ наносится жирной линией, здания и фундаменты — тонкой.

План заземления может быть дополнен разрезом траншеи и схемами соединения заземлителей и заземляющих спусков между собой. Указанные схемы допустимо отображать на отдельном листе.

План заземления подстанции 35 киловольт

5. Схема установки оборудования

На данном этапе рекомендуется проработать технические решения с выбранным производителем оборудования и, получив от него актуальные конструкторские чертежи, перенести их на ранее выполненный лист проекта⎘. Рекомендуемый масштаб установочного чертежа: 1:5, 1:10, 1:20, 1:50; допускается 1:100. На чертеже помещают спецификацию по формам 7 или 8 ГОСТ [1].

6. План и разрез ячеек

Этот чертёж, выполненный по правилам⎘, позволяет детально оценить соответствие установленного оборудования параметрам безопасности и удобства обслуживания. Скопировав на план и разрез ячеек выполненные предыдущим этапом установочные чертежи, остаётся учесть в спецификации оборудование и материалы, необходимые для соединения их между собой. Чаще всего такими материалами являются провод и сцепная арматура.

7. Прочие листы графической части

В графическую часть могут быть также включены:

  • схемы питания приводов, освещения и обогрева;
  • план молниезащиты;
  • 3D модель ОРУ;
  • план прокладки кабелей;
  • план освещения подстанции;
  • шаблоны информационных знаков оборудования и пр.

Все они не являются обязательными, если в их отсутствии соблюдаются основные функции тома.

План наружного освещения подстанции 110 киловольт

Детальные правила оформления графической части РД можно найти в ГОСТ [3].

ССЫЛОЧНЫЕ И ПРИЛАГАЕМЫЕ ДОКУМЕНТЫ:

8. Оформление ссылочных и прилагаемых документов

Перечень указанных документов отображается в табличном виде в разделе Общие данные тома.

К ссылочным документам относят:

  • стандарты (технические условия) на строительные изделия;
  • чертежи типовых конструкций, изделий и узлов.

Согласно ГОСТ [1] в рабочих чертежах допускается применять типовые конструкции, изделия и узлы путём ссылок на документы. Причём сами ссылочные документы в состав рабочей документации, передаваемой заказчику, не входят. Отсюда могут вытекать трудности на этапе монтажа, ввиду отсутствия указанных документов на площадке. Мы рекомендуем вносить «типовые» чертежи в раздел Прилагаемые документы, что допустимо согласно тому же государственному стандарту.

Прилагаемым документам присваивают обозначение основного комплекта с добавлением через точку шифра прилагаемого документа.

Ведомость ссылочных и прилагаемых документов
Обозначение Наименование Примечание
Ссылочные документы
СП 76.13330.2016 Электротехнические устройства
СП 131.13330.2018 Строительная климатология
ПУЭ Правила устройства электроустановок. Издание 6, 7
...
Прилагаемые документы
ПИР-5685/2023-ЭМ.КЖ Кабельный журнал
ПИР-5685/2023-ЭМ.С Спецификация оборудования, изделий и материалов
ПИР-5685/2023-ЭМ.ОЛ Опросный лист для заказа выключателя 110 кВ
ПИР-5685/2023-ЭМ.РР Проверка чувствительности аппаратов защиты
407-03-539.90-ЭП3 Типовой проект. Установка выключателя 110 кВ

9. Кабельный журнал

Кабельный (или кабельно-трубный) журнал выполняется в соответствии с ГОСТ [3]. Согласно п.6.5.2⎘ ГОСТ [3] в него включают кабели, провода (и трубы), всю необходимую информацию о которых невозможно привести на принципиальных схемах. Это значит: если Вы показали все кабели (с марками и длинами) на схемах, то включать кабельный журнал в проект необязательно.

10. Спецификация оборудования, изделий и материалов

Сводную спецификацию рекомендуют составлять по разделам в последовательности:

  • оборудование;
  • кабельно-проводниковая продукция (кабель, провод, муфты);
  • электромонтажные устройства и изделия (лотки, короба, металлорукав в ПВХ изоляции);
  • линейная арматура;
  • материалы (полоса стальная, трубы, метизы и т. п.).

Электроаппараты, поставляемые в комплекте с оборудованием, в спецификации не приводят, а включают в соответствующий опросный лист.

Не забывайте закладывать в составе материалов:

  • цинкосодержащую краску (или битумную мастику) для дополнительной коррозионной защиты заземляющих проводников;
  • токопроводящую смазку для контактов;
  • огнестойкую пену для герметизации кабельных вводов в здания и сооружения;
  • огнезащитную краску для кабелей;
  • специальные зажимы для заземления экранов кабелей;
  • таблички с крепежом для оборудования на ОРУ;
  • трубы, кабельные плиты и сигнальные ленты для прокладки кабеля в земле;
  • песок, кирпич и прочие строительные материалы.

11. Опросные листы на оборудование

Опросные листы формируются на основе заводских шаблонов и могут включать в себя:

  • полную техническую информацию, достаточную для изготовления оборудования;
  • опорные заводские конструкции, идущие в комплекте;
  • запасные изделия и приспособления, необходимые в процессе эксплуатации;
  • контакты и адрес заказчика;
  • способ доставки;
  • дополнительную информацию (при необходимости).

12. Расчёты

Расчёты в состав рабочей документации, как правило, не включают. Все необходимые расчёты должны выполняться на стадии ПД. Иное может быть определено в договоре (контракте) и задании на проектирование. А также может потребоваться по итогам выбора того или иного оборудования.

ВЫВОД

Если Вы прошли по порядку указанные этапы, то собрав воедино все выполненные листы проекта, получите том следующего состава.

Электротехнические решения. Рабочая документация
№ листа
п/п
Наименование Примечание
1. Обложка По форме⎘
Приложения У ГОСТ [1]
2. Титульный лист
Общие данные
3. Ведомость рабочих чертежей основного комплекта По форме 1⎘
Приложения В ГОСТ [1]
4. Ведомость ссылочных и прилагаемых документов По форме 2⎘
Приложения В ГОСТ [1]
5. Ведомость основных комплектов рабочих чертежей
6. Общие указания
Графическая часть
7. Схема электрическая принципиальная ПС
8. План ПС
9. План заземления
10. План и разрез ячеек
11. Схема установки оборудования
Прилагаемые документы
12. Кабельный журнал Необязательно
13. Спецификация оборудования, изделий и материалов
14. Опросный лист для заказа выключателя 110 кВ
15. Проверка чувствительности аппаратов защиты Необязательно
16. Типовой проект. Установка выключателя 110 кВ Необязательно

СЛУЧАЙ ИЗ ПРАКТИКИ. Если перебрать в голове все случаи из практики выполнения РД, то у большинства проектировщиков предстанет перед взором суетливый начальник с фразой: Правим ПЭ на ЭР и отправляем! Наверняка, каждый проходил через это, каждый в спешке менял в штампе несколько букв и с обидой в душе отправлял проектную документацию в виде рабочей. Несправедливость заключается лишь в том, что оценивается работа стадии ПД, в денежном выражении, на 40 процентов от итога, а РД — на 60.

Заказать проект можно через форму обратной связи на сайте

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

  • Энергетик
  • 29 мая 2023

Электротехнические решения. Объём проектирования в составе ПД

Подробнее

  • Энергетик
  • 28 апреля 2024

Выбор основного оборудования подстанции

Подробнее

1682

Электротехнические решения. Объём проектирования в составе ПД

Электротехнические решения без стеснения можно назвать основополагающим разделом при проектировании электрической подстанции. Без этого раздела не обходится практически ни один проект. Охватывает он, как правило, не только основное оборудование подстанции, но и низковольтные цепи его питания, освещение, собственные нужды (СН) подстанции и систему оперативного постоянного тока (СОПТ).

Фрагмент 3D ПС 220 кВ Южная

Существует несколько документов, определяющих содержание электротехнических решений в составе проекта. Эти документы можно найти во вкладке НТД⎘. Их состав немногочислен: Положение [1], ГОСТ [2] и [3], Требования [4] и [5].

Некоторые из них фундаментальны и занимают высокие ступени в иерархии НТД, но все они при ближайшем рассмотрении оказываются невероятно скудны в решении данного вопроса. Попытаемся заполнить этот пробел, посвятив статью стадии ПД.

СОДЕРЖАНИЕ:

  1. Расположение электротехнических решений в составе проекта.
  2. Основание для проектирования.
  3. Краткая характеристика объекта.
  4. Проектные технические решения.
  5. Определение расчётных параметров работы сети для выбора проектируемого оборудования.
  6. Выбор и проверка основного электротехнического оборудования.
  7. Ведомость основного электротехнического оборудования и материалов.
  8. Прочая информация.
  9. Схема электрическая принципиальная ПС.
  10. План ПС.
  11. 3D модель ОРУ.
  12. План и разрез ячеек.
  13. Схема установки оборудования.
  14. Технические требования на оборудование.
  15. Расчёты.
  16. Прочие прилагаемые документы.

РАСПОЛОЖЕНИЕ В СОСТАВЕ ПРОЕКТА:

1. Расположение электротехнических решений в составе проекта

Согласно Положению [1] подраздел «Система электроснабжения» располагается внутри раздела 5⎘ «Сведения об инженерном оборудовании, о сетях и системах инженерно-технического обеспечения».

Состав проекта

тома
Обозначение Наименование Примечание
1 2 3 4
ПИР-5685/2023-СП «Состав проектной документации»
Раздел 1 «Пояснительная записка»
1 ПИР-5685/2023-ПЗ «Пояснительная записка»
Раздел 3 «Объёмно-планировочные и архитектурные решения»
3 ПИР-5685/2023-АР «Архитектурные решения»
Раздел 4 «Конструктивные решения»
4 ПИР-5685/2023-КР «Конструктивные решения»
Раздел 5 «Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения»
Подраздел 1 «Система электроснабжения»
5.1 ПИР-5685/2023-ИОС1 Книга 1 «Электротехнические решения»
...

Несмотря на то, что и раздел 5, и указанный подраздел уже не являются основными в составе проекта («Технологические решения» с 1 сентября 2022 года вынесены в отдельный раздел 6), для основного оборудования ПС место отведено только в нём. Собственные нужды, включая низковольтные цепи и освещение, а также СОПТ, в случае большого объёма проектирования, выносят в отдельные тома.

Допускается сквозная нумерация томов в составе раздела (ИОС1, ИОС2... — в таблице).

ТЕКСТОВАЯ ЧАСТЬ:

2. Основание для проектирования

Здесь указывается задание на проектирование, инвестиционная программа, технические условия на присоединение или иные документы, имеющие отношение к проектируемому титулу .

3. Краткая характеристика объекта

Глава содержит общую информацию о подстанции, включая:

  • основное функциональное назначение;
  • основные характеристики;
  • описание электрических схем;
  • состав СН и СОПТ;
  • тип оперативного обслуживания.

4. Проектные технические решения

В главу включают информацию об основных технических решениях, принятых в проекте. В случае необходимости в эту главу также вносят обоснование того или иного решения.

5. Определение расчётных параметров работы сети для выбора проектируемого оборудования

По результатам расчётов определяются:

  • номинальные параметры оборудования (например, максимальный рабочий ток присоединения);
  • динамическое действие аварийного тока (ударный ток КЗ);
  • термическое действие аварийного тока (тепловой импульс КЗ);
  • изоляция, включая длину пути утечки оборудования (в соответствии с ГОСТ [6], РД [7] или СТО [8], [9]), а также количество (п. 1.9.12 ПУЭ⎘ [10]) и тип (ГОСТ [11]) подвесных изоляторов;
  • параметры ОПН;
  • соответствие ошиновки длительно допустимому току, термической и динамической стойкости, условиям короны (на ОРУ 35 кВ и выше);
  • соответствие высоковольтных кабелей длительно допустимому току и их термическая стойкость;
  • динамическая стойкость опорной изоляции;
  • максимальное тяжение на фазу в нормальном режиме.

6. Выбор и проверка основного электротехнического оборудования

Вся информация по выбору оборудования представляется в табличном виде. Помимо выбора проектируемого оборудования, в главу может быть включена проверка существующего, если того требует задание на проектирование или сложные расчётные условия. Параметры выбора высоковольтных выключателей (как пример) отражены ниже.

Выбор выключателя
Расчётные величины Каталожные данные выключателя Условие выбора
Наименование параметра Значение
Uуст, кВ 110 Uном = 110 кВ Uном ≥ Uуст
Iраб.маx, А 1193 Iном = 2000 А Iном ≥ Iраб.маx
Iп.0, кА 34,5 Iном.откл = 40 кА Iном.откл ≥ Iп.0
iуд, кА 84 iдин = 100 кА iдин ≥ iуд
Вк, кА2‧c 136 I2терм‧tтерм = 402‧3 = 4800 кА2‧c I2терм‧tтерм ≥ Вк
ia,t, кА 10,8 √2‧Iном.откл‧βнорм/100 = √2‧40‧40/100 = 22,6 кА √2‧Iном.откл‧βнорм/100 ≥ ia,t

7. Ведомость основного электротехнического оборудования и материалов

Ведомость оборудования также представляется в табличном виде и должна быть достаточной для учёта всех материальных ресурсов в сметной документации.

Ведомость основного электротехнического оборудования и материалов

п/п
Наименование Тип Ед.
изм.
Кол-во Примечания
1. Выключатель элегазовый колонковый Uном = 110 кВ
Iном = 2000 А
Iном.откл = 40 кА
шт. 7 трёхполюсный
2. Шинная опора 110 кВ Uном = 110 кВ шт. 3
3. Провод сталеалюминиевый АС 300/39 м 246
4. АС 185/24 м 60
5. Зажим аппаратный прессуемый А4А-300-2 Т шт. 57
6. А4А-185-2 Т шт. 18
7. 2А4А-300-3 Т шт. 3
8. 2А4А-300-4 Т шт. 6

Ввиду того, что распространённое понятие «спецификация» до недавнего времени не находила своего отражения в Положении [1], эксперты настойчиво не допускали таким образом называть данную ведомость. Изменился ли этот подход после появления «спецификации» в Положении (в редакции, вступившей в силу с 1.09.2022) — узнаем позже.

8. Прочая информация

Прочая информация может содержаться как в одной, так и нескольких главах, включающих в себя описание:

  • СН переменного тока;
  • СОПТ;
  • освещения;
  • компенсирующих устройств;
  • молниезащиты и заземления;
  • кабельного хозяйства;
  • электромагнитной совместимости.

Информация излагается в повествовательной форме с отражением сведений и обоснованием их применения. В виду того, что большинство этих вопросов обычно выносится в отдельные тома, здесь их касаться не будем.

ГРАФИЧЕСКАЯ ЧАСТЬ:

9. Схема электрическая принципиальная ПС

Встречаются несколько типов схем, отражающих электрическую взаимосвязь подстанции. Это может быть нормальная схема ПС, главная схема ПС, схема электрических соединений или принципиальная схема. В качестве основной в проекте выступает — только принципиальная.

Если объём проектирования затрагивает лишь один уровень напряжения ПС (например, замена выключателей 110 кВ), то достаточной может быть отрисовка лишь схемы ОРУ 110 кВ. Если производится комплексная реконструкция с изменением схемы ПС, то необходимо её полное отражение в проектном (после проведения реконструкции) варианте. Эта схема в дальнейшем пойдёт на согласование со всеми заинтересованными сторонами.

Правила оформления электрических принципиальных схем можно найти в распоряжении ФСК [12], СТО [13] и Требованиях [4]. Опишем их вкратце:

  • изображение элементов на схеме должно соответствовать ГОСТ [14] и [15];
  • заполняют схему сверху — вниз, от высшего класса напряжения — к низшему, стараясь расположить РУ друг относительно друга в соответствии с их фактическим расположением;
  • расцветка элементов выполнятся в строгом соответствии с уровнем напряжения РУ;
  • существующая часть отображаются тонкой сплошной линией, проектируемая — жирной;
  • параметры оборудования и присоединений представляются в табличном виде, напротив соответствующей позиции;
  • на шинах каждого РУ дополнительно указываются перспективные расчётные токи КЗ;
  • в примечаниях указывается: на основании какой схемы она выполнена.
Схема электрическая принципиальная

Задание на проектирование также может потребовать выполнение указанной схемы с применением современных программных комплексов. Данный вопрос заслуживает отдельной статьи.

Помимо главной, электротехнические решения могут содержать прочие электрические схемы: ЩСН, обогрева, освещения. К ним предъявляют менее строгие требования при оформлении.

10. План ПС

Расстановка оборудования на плане выполняется по осям. Расстояния между осями задаются в типовых проектах на основе допустимых изоляционных расстояний по гл.4.2 ПУЭ⎘ [10]. Существующая часть отображается тонкой сплошной линией, проектируемая — жирной. Сносками обозначают проектируемое оборудование с расшифровкой его в ведомости, располагаемой здесь же, либо на отдельном листе. Оборудование на плане чаще всего детально не прорисовывают.

План ОРУ 110 кВ

Как и электрическая схема, план ПС может выполняться в виде фрагмента, если в результате реконструкции не затрагивается прочая его часть.

Проектируемую часть допускается наносить на геодезическую подоснову в соответствии с вышеуказанными правилами.

11. 3D модель ОРУ

Для правильного пространственного построения ОРУ иногда требуется трёхмерное изображение оборудования. В помощь могут прийти современные программные комплексы и наработки производителей.

Фрагмент 3D ПС 220 кВ Южная
Фрагмент 3D ПС 110 кВ Южнее южного
Фрагмент 3D ПС 35 кВ Северная

12. План и разрез ячеек

Для правильного и всеобъемлющего отображения информации на данных листах лучше использовать повторно применяемые (типовые) чертежи.

Лист должен включать в себя:

  • разрез ячейки;
  • план ячейки;
  • поясняющую схему;
  • спецификацию оборудования и материалов.

На плане и разрезе ячейки важно показать не только проектируемое оборудование, но и привязку к существующему. Помимо основных размеров по осям оборудования на листе должны быть показаны изоляционные расстояния (по ПУЭ [10]) и высота мест подключения ошиновки. По возможности показывают монтажные стрелы провеса провода в пролётах. Обязательной является маркировка фаз, цветом и (или) буквенным обозначением «А-В-С». По осям на разрезе ячейки наносят обозначения оборудования, автомобильных проездов, порталов, кабельных лотков и прочего: обозначение оборудования должно совпадать с обозначением на поясняющей схеме. Спецификацию допускается размещать на отдельном листе с обязательной отсылкой на неё в примечаниях.

План и разрез ячейки 110 кВ

13. Схема установки оборудования

Изображение отдельной единицы проектируемого оборудования на чертеже позволяет понять:

  • его размеры;
  • способ крепления к фундаменту;
  • составные его части;
  • условия безопасного обслуживания;
  • установочные и присоединительные размеры;
  • места и способ заземления.

Установка оборудования должна быть показана в трёх аксонометрических проекциях или трёх проекциях с 3D видом, но может ограничиваться двумя или даже одним видом, если они (он) позволяют однозначно оценить все указанные выше особенности.

Схема установки оборудования

Для исключения загромождений на чертеже некоторые детали условно не показывают, о чём делается соответствующая ремарка в примечаниях.

ПРИЛОЖЕНИЯ:

14. Технические требования на оборудование

Таблицы технических требований заполняются на основе типовых и могут дополняться по указанию заказчика в виду индивидуальных особенностей объекта. Таблицы могут включаться в состав текстовой части, если имеют незначительный объём.

Типовые технические требования на любое электротехническое оборудование можно найти на странице НТД⎘.

15. Расчёты

В качестве обоснования принимаемых технических решений к проекту могут прилагаться расчёты:

  • токов КЗ;
  • выбора и проверки оборудования;
  • загрузки ТСН;
  • проверки низковольтных аппаратов защиты;
  • падения напряжения в низковольтных цепях;
  • проверки кабелей на термическую стойкость и невозгорание.

16. Прочие прилагаемые документы

К таким документам могут относиться письма о согласовании или отдельные указания заинтересованных сторон, оказавшие влияние на решения, принятые в данном томе ПД.

ВЫВОД

Наполнение электротехнической части ПД может быть разным, во многом оно зависит от задания заказчика и предварительных расчётов, но структурно оно не должно отличаться от общепринятых шаблонов. В этой статье мы попытались собрать воедино структуру Вашего будущего проекта, не углубляясь в его суть.

А упомянутые НТД Вы сможете отыскать на соседней странице⎘.

ССЫЛОЧНАЯ ЛИТЕРАТУРА:

  1. Постановление Правительства от 16 февраля 2008 года № 87 «Положение о составе разделов проектной документации и требованиях к их содержанию»⎘.
  2. ГОСТ Р 21.101-2020 СПДС. Основные требования к проектной и рабочей документации⎘.
  3. ГОСТ 21.613-2014 Правила выполнения РД силового электрооборудования⎘.
  4. 304тм-т1 Требования к составу, содержанию и оформлению проектов ПС и ЛЭП напряжением 220 кВ и выше⎘.
  5. Электротехническая РД. Общие требования и рекомендации по составу и оформлению⎘.
  6. ГОСТ 9920-89 Длина пути утечки внешней изоляции⎘.
  7. РД 34.51.101-90 Инструкция по выбору изоляции электроустановок⎘.
  8. СТО 56947007-29.240.059-2010 Инструкция по выбору изоляции электроустановок⎘.
  9. СТО 56947007-29.240.068-2011 Длина пути утечки внешней изоляции электроустановок 6-750 кВ⎘.
  10. Правила устройства электроустановок. Издание 6, 7⎘.
  11. ГОСТ Р 56736-2015 Керамические и стеклянные изоляторы для систем переменного тока⎘.
  12. Распоряжение ФСК № 881 от 21.12.12 «Правила оформления схем принципиальных электрических ПС»⎘.
  13. СТО 56947007-29.240.10.249-2017 Правила оформления принципиальных электрических схем⎘.
  14. ГОСТ 2.723-68 ЕСКД. Обозначения условные графические в схемах⎘.
  15. ГОСТ 2.755-87 ЕСКД. Обозначения условные графические в электрических схемах⎘.

СЛУЧАЙ ИЗ ПРАКТИКИ. В составе тома «Сети связи» выполнена электрическая схема питания оборудования. В ходе согласования проекта к многократно скорректированной схеме получены новые замечания. Большинство замечаний следующего характера:

  • недопустимо объединять три фазы в одну линию;
  • каждую фазу показать отдельным цветом L1 — коричневым, L2 — чёрным, L3 — серым, N — бирюзовым, PE — жёлто-зелёным по ГОСТ Р 50462-2009 (ГОСТ⎘ на электрооборудование и кабельную продукцию — прим.);
  • вводные выключатели показать над отходящими, расположение в ряд — недопустимо;
  • в наименовании напряжения придерживаться унифицированных решений: или 220VAC, или ~220В — вариант АС230В недопустим;
  • вводные автоматические выключатели показать как xQS1, выводные — yQFz, где x, y, z — переменные величины (QS — разъединитель, согласно маркировкам действующего ГОСТ 2.710-81⎘ — прим. ).

Но всю красоту полученных замечаний может выразить только картинка

Электрическая схема питания

Отсюда следует, что, даже соблюдая все каноны НТД в своём проекте, Вы не застрахованы от неожиданностей на этапе согласования.

Заказать проект можно через форму обратной связи на сайте

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

  • Энергетик
  • 28 апреля 2024

Выбор основного оборудования подстанции

Подробнее

  • Энергетик
  • 20 июня 2023

Электротехнические решения. Объём проектирования в составе РД

Подробнее

Морская солнечная электростанция

Крупнейшая в мире морская солнечная электростанция

Подробнее о ней — читайте в нашем канале

В телеграм
Пройди тестирование —
проверь свои знания в сфере
энергетики
Пройти тест
Лучшее, что Вы можете сделать для нас, выразив благодарность, — это подписаться на наш телеграм-канал
Обратная связь через Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
©2024. Энергетик.ру — все права защищены