Как выбрать автоматический выключатель и проверить правильность его установки мы рассмотрели в предыдущей статье⎘. Далее попытаемся свести воедино всё разнообразие представленной номенклатуры на рынке, систематизировать её, тем самым показав отличия того или иного варианта.
Представляем вашему вниманию модульный автоматический выключатель (АВ).
Модульный АВ – это наипростейший неразборный нерегулируемый АВ, предназначенный чаще всего для бытового использовании, устанавливаемый на DIN-рейку в щитках или шкафах. Этот прибор может дополнительно комплектоваться устройствами, способными улучшить его функциональность (дополнительные блок-контакты, реле напряжения, независимый расцепитель и пр.), но только за счёт увеличения своих габаритов, занимая дополнительные места в шкафу.
Пойдём от простого к сложному: от модульных АВ к блочным АВ с электронным расцепителем, потому что именно так, по нашему мнению, должен поступать потребитель, выбирая себе нужный продукт. Если при сравнении и проверке какая-то из особенностей или функций аппарата не удовлетворяет запросы потребителя, необходимо переходить к следующему аппарату, стоящему на ступень выше. Только так можно подобрать необходимое, значительно сэкономив бюджет. Вопрос надёжности того или иного АВ в настоящих статьях не рассматривается, так как это очень субъективный фактор, на оценку которого требуется длительное время. Про возможный контрафакт продукции есть много информации в интернете – также не касаемся этого вопроса в наших статьях.
Итак, всю информацию сведём в таблицы. Набор функций и характеристик, указанный в таблицах, представлен в каталогах производителей. Он наиболее полно отражает оценочную картину, а также достаточен для правильного заказа автоматов у поставщиков. В скобках указаны возможные варианты для заказа. Например, если исключить параметры, заключённые в скобки, получим автомат, отвечающий минимальным требованиям. Стоимость указана в рублях, в ценах 2019 года с сайтов крупных поставщиков. Взаимозаменяемые аппараты (с идентичными или схожими характеристиками) выделены одинаковым цветом – для наглядности.
ПОЛНАЯ ИНФОРМАЦИЯ ДОСТУПНА ДЛЯ СКАЧИВАНИЯ
ВЫВОД. Для того, чтобы правильно подойти к вопросу, недостаточно знать как выбрать АВ⎘ – нужно ещё знать из чего выбрать. Очень сложно бывает разобраться в каталогах производителей самому, поэтому мы попытались помочь Вам в этом вопросе, собрав всю необходимую информацию воедино.
Ввиду того, что логистика в настоящий момент нарушена, указанная стоимость АВ может значительно отличаться от представленного в таблицах (а может и вовсе отсутствовать) и объективному сравнению не поддаётся: цена указана лишь для количественного сравнения того или иного продукта.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
Зачастую потребитель, не зная многообразие выбора низковольтной отечественной и зарубежной аппаратуры, выбирает наиболее распространённый, разрекламированный продукт с доступной информацией. Другие же производители, не имеющие ярких буклетов, но обладающие тем же набором функций и не уступающие им по качеству, остаются в стороне.
Одним из таких продуктов является автоматический выключатель (АВ). Как выбрать АВ, каковы их главные особенности, где находят им применение и насколько велик их выбор – эти и другие вопросы попытаемся решить в ближайшей серии статей.
СОДЕРЖАНИЕ:
Автоматический выключатель – это контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение заданного времени и отключать токи при оговоренных аномальных условиях в цепи, например короткого замыкания (КЗ).
Существует несколько разновидностей АВ. Если идти от простого к сложному, то выделяют: модульные АВ, АВ в литом корпусе, воздушные АВ. Последние два типа можно объединить в одну группу, АВ блочного типа, так как они оба могут комплектоваться дополнительными блоками и имеют схожий функционал, но об этом подробнее в других статьях. Здесь же мы постараемся осветить главные критерии выбора АВ любого из представленных типов со ссылками на нормативно-технические документы.
ПОРЯДОК ВЫБОРА И ПРОВЕРКИ АВТОМАТА:
1) Определение нагрузки потребителей.
Определение суммарной нагрузки потребителей (Sпотр, Вт), питаемых через АВ.
2) Определение расчётного тока.
Определение расчётного тока с учётом поправочных коэффициентов (одновременности Ко, использования Ки и спроса Кс)
Iрасч = Ko∙Sпотр/Uф, А.
Как определить значения этих коэффициентов, подробно описано, в частности, в СП-31-110 «Проектирование и монтаж электроустановок жилых и общественных зданий»⎘, техническом циркуляре ВНИГМ Тяжпромэлектропроект №359-92 «Указания по расчёту электрических нагрузок»⎘ и «Руководстве по устройству электроустановок. Шнейдер Электрик. 2019»⎘. Максимальное значение этих коэффициентов равно единице.
3) Отстройка тепловой защиты.
Отстройка тепловой защиты (номинала АВ Iном.АВ, А) от расчетного тока Iрасч – путем увеличения полученного значения на 10-30%.
Конечный «процент» зависит от характера нагрузки и обозначается коэффициентом надёжности Кн. Его значение можно определить по табл. 8.6 Кабышев, Обухов «Расчет и проектирование систем электроснабжения объектов и установок. 2006»⎘.
Например, для ламп накаливания можно принять Кн = 1, для группы потребителей – 1,1, а для светильников с лампами ДЛР – 1,3
Iном.АВ = 1..1,3∙Iрасч, А.
4) Координация АВ с отходящим кабелем.
Координация АВ с отходящим (защищаемым) кабелем (шинами)
Iном.АВ ≈ 80% Iдоп, А,
где Iдоп – длительно допустимый ток кабеля (шин).
5) Проверка на отключающую способность.
Согласно требованиям норм аппарат защиты должен выдержать отключение сквозного тока короткого замыкания, пройденного через него, и остаться в работоспособном состоянии.
Проверка осуществляется по максимальному току КЗ за аппаратом. У большинства АВ отключающая способность маркируется значением в Амперах или буквой на фасадной стороне устройства.
Если в характеристиках защитного устройства указывается два параметра (номинальная рабочая Ics и номинальная предельная Icu отключающие способности), то выбирать защитное устройство необходимо по минимальному значению (рабочей отключающей способности Ics). Допускается выбор по предельной отключающей способности, если аппарат не является вводным (ГОСТ Р 50571.5.53-2013 п.533.3⎘)
Ics(cu) > Iкз, кА.
6) Проверка на чувствительность.
При проверке рассматривается минимальный ток КЗ (чаще всего однофазный) в конце защищаемого участка. Минимальное значение коэффициента чувствительности Кч регламентировано Правилами технической эксплуатации электроустановок потребителей, Приложение 3 п.28.4⎘ и не должно быть меньше 1,1
Iкз/Iто.АВ ≥ 1,1,
где Iто – ток срабатывания токовой отсечки (ТО) АВ. У модульных АВ, с наиболее распространённой характеристикой «С», Iто лежит в диапазоне 5..10∙Iном.АВ, у блочных – может регулироваться.
Но согласно п.7.2.1.2.4⎘ и п.8.3.3.1.2 ГОСТ Р 50030.2-2010⎘, задающего требования к АВ, расцепитель токов КЗ должен вызывать размыкание выключателя с максимальной погрешностью 20% и срабатывание расцепителей токов КЗ проверяется при 120 % уставки. То есть при Кч < 1,2 срабатывание автоматов не гарантируется. В соответствии с этим разные источники рекомендуют принимать значение Кч от 1,4 до 1,5 или даже до 1,7. Мы же рекомендуем принимать коэффициент чувствительности, равный или больший 1,4, для автоматов с номинальным током до 100 А и 1,25 – для прочих АВ (как в типовом проекте 12640тм т.1 1985г.⎘)
Iкз/Iто.АВ ≥ 1,4 (для Iном.АВ < 100 А),
Iкз/Iто.АВ ≥ 1,25 (для Iном.АВ ≥ 100 А).
7) Проверка на селективность.
Селективность – это координация рабочих характеристик двух или нескольких устройств для защиты от сверхтоков с таким расчетом, чтобы в случае возникновения сверхтоков в пределах указанного диапазона срабатывало только устройство, предназначенное для оперирования в данном диапазоне, а прочие не срабатывали.
Для соблюдения селективности с токовыми отсечками выше- и нижестоящих аппаратов защиты вводят коэффициент согласования Ксогл, равный 1,3..1,5
Iто.ниж∙1,3..1,5 ≤ Iто.АВ ≤ Iто.выш/1,3..1,5,
либо выбирают автоматы одного производителя на основе заводских таблиц координации устройств. Такие таблицы рекомендуют последовательно устанавливать аппараты, отличающиеся не менее чем на две ступени по шкале номинальных токов (например, 40 и 25 А, а не 32 и 25 А).
Для согласования по времени можно «замедлить» срабатывание ТО вышестоящего аппарата на ступень селективности ∆t. Чаще всего такая поправка вводится в секционных (СВ) и вводных (ВВ) выключателях, её значение принимается равным 0,1..0,2 с
tто.вв = tто.св + ∆t = 0,1 + 0,1 = 0,2 с.
Итоговое значение времени срабатывания АВ не должно превышать предела в 0,5 с, налагаемого требованиями ПУЭ⎘ и ГОСТ Р 50571.3⎘ к распределительной линии. Хотя этими же НТД допускается увеличение времени отключения до 5 с в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки.
Введение данного коэффициента Ксогл и ступени ∆t конечно способствует селективному срабатыванию аппаратов при КЗ, но достоверную картину правильного выбора автоматов может показать только карта селективности. Поэтому Заказчики часто требуют её отражения в проекте.
Очень подробно про селективность написано в методичке АББ «Селективность АВ АББ в сетях низкого напряжения» 2007 года⎘, где авторы выделяют также токовую, временную, энергетическую и зонную селективности.
Соблюдая все указанные выше пункты при выборе и проверке АВ, нужно помнить также незначительную их особенность. А именно то, что минимальный ток срабатывания АВ при перегрузке равен 1,15..1,35-кратному номинальному току, то есть при переходе номинального порога автомата током нагрузки ещё не гарантируется его срабатывание.
В этой статье мы не коснулись вопроса количества полюсов АВ (нужно ли устанавливать двух- и четырёхполюсные АВ в однофазной и трёхфазной сети соответственно), не рассмотрели так называемые быстродействующие (токоограничивающие) выключатели, дифавтоматы и многое другое. Планируем коснуться этого позже. Разнообразие автоматов представлено в следующих статьях серии.
ВЫВОД. Выбор автоматического выключателя – это довольно непростая задача, требующая тщательного анализа. От того, как он будет проведён, зачастую зависит надёжность электроснабжения и бюджет Заказчика.
Надеемся, что данная статья позволит наиболее объективно подойти к выбору автоматов не только простому обывателю, далёкому от всех нюансов электротехники, но и энергетику, имеющему большой профессиональный опыт проектирования, монтажа или эксплуатации электрооборудования.
СЛУЧАЙ ИЗ ПРАКТИКИ. Поставщики высоковольтного электрооборудования, особенно иностранного, зачастую грешат установкой автоматических выключателей с заниженными параметрами. Это (возможно) удешевляет оборудование, не влияя на его работоспособность, но противоречит стандартам.
Один такой случай произошёл при монтаже высоковольтного разъединителя 110 кВ. В цепи питания привода разъединителя с рабочим током 2 А установлен АВ номиналом в 1 А. Время срабатывания автомата при двукратном превышении номинала, согласно время-токовой характеристике, от 20 до 100 с, время работы привода – не более 10 с. То есть двигатель привода хоть и работает в зоне перегрузки автомата, но за время его работы тепловая защита не успевает отработать.
Согласно ГОСТ Р 50571.4.43-2012 такой режим недопустим. Пункт 433.1 гласит: номинальный ток защитного устройства должен быть больше расчётного тока цепи и меньше длительно допустимого тока кабеля
Iрасч ≤ Iном.АВ ≤ Iдоп.
Кстати, указанный ГОСТ 2012 года – это перевод европейского же стандарта МЭК 2008 года.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
В советские времена было нормой строить громоздкие сооружения на обширной территории. Это касалось и электрических подстанций. Отдавая дань прошлому, можно с уверенностью сказать, что строилось это надёжно, как говориться, на века. Но в современных условиях при строительстве и реконструкции подстанций нельзя не учитывать факторы, которые порой становятся важнее фактора надёжности. Такими аспектами могут быть и экономическая составляющая, и срок реализации, и недолговременное использование. Экономическая составляющая, в свою очередь, может идти флагманом, так как стоимость возведения, аренда излишней земли, убытки от простоя оборудования выходят на первый план при анализе затрат.
Какие они – подстанции сегодняшнего дня и ближайшего будущего, что можно улучшить с их помощью и какие задачи побуждают их создание? Ответы на эти вопросы – в продолжение темы блочных подстанций (начало см. в статье Блочно-модульные подстанции⎘).
Трансформаторная подстанция – это электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств.
Современные подстанции можно разделить на три типа: открытые блочные, закрытые блочно-модульные и мобильные. Всех их объёдиняет компактность и сжатые сроки строительства, что зачастую позволяет сэкономить на капитальных затратах без снижения качества продукции. Они могут создаваться как независимо друг от друга, так и в различных взаимных сочетаниях. Большинство технологических процессов при создании этих подстанций происходит на заводе-изготовителе, а на площадке строительства фактически происходит их досборка.
Итак, третий и наименее распространённый тип современных (быстровозводимых) подстанций: мобильные подстанции.
Мобильная подстанция – это трансформаторная подстанция, установленная на шасси.
Номиналы используемых мобильных подстанций: ПС 110/6(10), 35/6(10), 110/35, 10/6 кВ.
Мобильная подстанция (МПС) может применяться при ремонте и реконструкции стационарных подстанций – взамен выведенной части подстанции, временно – при увеличении нагрузок, а также при новом строительстве – с учётом соответствующего экономического обоснования.
Экономически применение МПС оправдывается минимальной занимаемой площадью. Для сравнения: мобильная подстанция 35/10 кВ устанавливается на площадке 20х7 метров, такая же стационарная – от 36х25 метров. Также для неё не нужно проводить экспертизу проекта – она поставляется как готовое изделие, а нужно лишь получить акт от Ростехнадзора. Преимуществом служит и небольшое время так называемого «разворота» (времени, затраченного от момента приезда подстанции на площадку до готовности к её включению): от паспортных двух дней до реальных двух-трёх недель.
Ниже рассмотрим некоторые уникальные особенности мобильной подстанции.
Возможна параллельная работа нескольких подстанций для получения необходимой мощности и степени надёжности.
Мобильную подстанцию необходимо устанавливать на подготовленную площадку, организовывать контур заземления по периметру, ограждать, предусматривать молниезащиту.
Подстанции с высшим напряжением 110 кВ располагаются на двух шасси, 35 и 10/6 кВ – на одном. В первом варианте КРУЭ-110 и силовой трансформатор занимают первый трал, ЗРУ-6(10) с ОПУ – второй. Во втором варианте ОРУ-35 может размещаться на седле трала, а трансформатор и ЗРУ-6(10) – на платформе.
В ЗРУ 6 (10) кВ располагаются:
- ячейки КРУ (КСО) 6 (10) кВ одностороннего обслуживания;
- шкафы релейной защиты и автоматики;
- шкафы системы постоянного оперативного тока с аккумуляторной батареей;
- трансформатор собственных нужд (ТСН) (в ячейке КРУ или КСО, либо выносится за пределы ЗРУ в специальном защитном кожухе);
- шкаф собственных нужд;
- шкаф системы телемеханики.
Используемые силовые трансформаторы: специального типа, уменьшенных габаритов.
Мощность подстанций 110 кВ: от 16 до 25 МВА включительно; 35 кВ: 4 –10 МВА.
Высоковольтные соединения выполняются кабелем, комплектными токопроводами (КРУЭ 110 кВ), а также неизолированными проводами или шинами. Неизолированные провода и шины применяются для оборудования до 35 кВ включительно и требуют установки дополнительных ограждений для соблюдения электробезопасности.
РУ низшего напряжения может быть универсальным, применимым как на напряжение 6, так и 10 кВ. В этом случае оборудование выбирается на номинал 10 кВ, в силовом трансформаторе предусматривается специальный привод для перевода с 6 на 10 кВ, а в ТСНе производится перевод схемы соединения обмотки ВН с треугольника на звезду.
Мощности ТСН, как правило, достаточно 40 кВА, что обеспечивает компактное его размещение.
Отходящие линии могут быть как кабельными, так и воздушными.
Для подключения питания ПС может понадобиться дополнительная установка стационарного линейного разъединителя 110 кВ либо монтаж линейного портала 35 кВ.
При размещении подстанции необходимо задуматься об организации связи: зоне покрытия сотовой сети или возможности подключения по другим каналам.
Как указывалось выше, МПС создаются в том числе для трансформации напряжения 110/35 кВ, что применимо в случае резервирования трансформаторов такого же класса напряжений. Устанавливаться они могут за пределами подстанций, на подходе к ним, в разрез существующих воздушных линий.
ЗРУ 35 кВ стандартного транспортного габарита не позволяет обеспечить необходимый коридор обслуживания из-за больших размеров ячеек, поэтому используется вариант увеличения внутреннего пространства с помощью лёгких конструкций по месту.
Компоновка оборудования должна учитывать нагрузочную способность трала, допустимую нагрузку на ось и транспортный габарит для передвижения по дорогам общего пользования. Для этого применяются низкорамные тралы грузоподъёмностью до 60 тонн.
Недостатками мобильных подстанций являются: ограниченное кол-во присоединений (от 3-х до 5-ти), ещё достаточно малый опыт эксплуатации, отсутствие отечественных производителей оборудования (в частности, силовых трансформаторов), сложность проезда в труднодоступные места.
ВЫВОД. Подстанцией может быть не только капитальное сооружение, которое нужно спроектировать, пройти экспертизу проекта, затратить силы и средства на закупку и строительство. В роли подстанции может выступать временное сооружение, такое как мобильная электрическая подстанция. Также как и другие, она имеет свои достоинства и недостатки, но главной её особенностью является манёвренность, позволяющая оперативно решить вопрос покрытия электрических нагрузок.
Настоящая статья может помочь энергетику взвесить все «за» и «против» МПС, а также сформулировать основные требования, предъявляемые при закупке.
СЛУЧАЙ ИЗ ПРАКТИКИ. Приезжаем к месту установки МПС. Она в работе: подключена к ВЛ 110 кВ, установлен линейный разъединитель для создания видимого разрыва, выполнено заземление и ограждение, трансформатор гудит. Всё выполнено качественно, с применением зарубежного оборудования. Смущает одно – исполнение маслоприёмника под трансформатором. На фото можно увидеть его качество. Выполнен он из листовой стали, сваренной между собой, образуя замкнутый борт под тралом поверх железобетонной площадки. Окрашен частично и имеет неэстетичный вид. Но не это главное!
Во-первых, герметичность такого сооружения в случае разлива трансформаторного масла не выдерживает никакой критики. Во-вторых, маслоприёмники под трансформаторы с объёмом масла до 20 т (в нашем случае – 12 т) допускается выполнять без отвода масла в соответствии с п.4.2.69 ПУЭ⎘, но для этого должны быть созданы определённые условия, чего выполнено не было. В-третьих, возникает вопрос: настолько ли важным является требование инспектирующих данный объект органов к установке оборудования для создания видимого разрыва со стороны питания (в соответствии с п.4.2.21 ПУЭ⎘ это является необязательным), в то время как не приняты меры по предотвращению развития аварии и охраны окружающей среды?
Ниже на фото представлены варианты решения данной проблемы.
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ
В условиях постоянного развития, стремительного изменения внешних условий человеку приходится приспосабливаться, совершенствоваться и подбирать новые ключи к дверям, открывающим путь в будущее. В данной статье хотелось бы поговорить об одном из таких ключей в энергетике: современных блочно-модульных подстанциях. Какие они – подстанции сегодняшнего дня и ближайшего будущего, что можно улучшить с их помощью и какие задачи побуждают их создание? Эти и другие вопросы осветим ниже.
Трансформаторная подстанция – это электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств.
Так выглядит большинство подстанций 35 кВ и выше, построенных ещё в советское время.
Современные (быстровозводимые) подстанции с высшим напряжением 35-110 кВ можно разделить на три типа: открытые блочные, закрытые блочно-модульные и мобильные. Всех их объединяет компактность и сжатые сроки строительства, что зачастую позволяет сэкономить на капитальных затратах без снижения качества продукции. Они могут создаваться как независимо друг от друга, так и в различных взаимных сочетаниях. Большинство технологических процессов при создании этих подстанций происходит на заводе-изготовителе, а на площадке строительства фактически происходит их досборка.
В этой статье рассмотрим первые два типа.
Итак, ОТКРЫТЫЕ БЛОЧНЫЕ ПОДСТАНЦИИ.
В состав этих подстанций входят трансформаторы и блочные распределительные устройства открытого типа.
Открытое блочное распределительное устройство (блочное ОРУ) – это электротехническое устройство, расположенное на открытом воздухе, служащее для приема и распределения электроэнергии трехфазного переменного тока, содержащее коммутационные аппараты, сборные и соединительные шины и поставляемое в собранном или подготовленном для сборки виде.
Номинальные напряжения представленных распределительных устройств (РУ): 35 – 110 кВ.
Блоки ОРУ могут комплектоваться типовым оборудованием (выключатели, трансформаторы тока и напряжения) и реклоузерами (с использованием датчиков тока и напряжения).
Ошиновка между блоками чаще всего жёсткая, из алюминиевого сплава. Она позволяет уменьшить габариты, соблюдая изоляционные расстояния (по ПУЭ⎘). Для жёсткой ошиновки нет необходимости в проверке на допустимое сближение во время короткого замыкания и расчета стрелы провеса. Но, как и для гибких проводов, необходима проверка на электродинамическую и термическую стойкость. Электродинамический расчет необходим для определения максимального механического воздействия на опорную изоляцию при ударном токе КЗ, термический – для определения нагрева проводника при КЗ и сравнения с предельно допустимым значением. Подробные расчеты приведены в ГОСТ Р 52736⎘.
Ошиновка должна обладать высокой прочностью, стойкостью к коррозии и хорошей свариваемостью. Для исключения деформаций опорных изоляторов и вводов оборудования ошиновка комплектуется температурными компенсаторами. Присоединение линий и трансформаторов гибкое (проводом типа АС, АСО в изоляции или без неё, СИП) – для сохранения целостности при вибрациях.
На ОРУ блочного исполнения, в отличие от ОРУ классического типа, помимо нескольких индивидуальных площадок обслуживания (у каждого шкафа управления и коммутации оборудования) может применяться единая площадка, связывающая все блоки и обеспечивающая проход вдоль всего оборудования без спуска на землю. Возможен также вариант без площадок обслуживания, что позволяет снизить затраты на строительство, но в таком случае возникает вопрос безопасности при обслуживании подстанции в зимний период при условии высокого снегового покрова.
Компоновка блочных ОРУ зачастую требует установки дополнительных внутренних ограждений. Они нужны для электробезопасности персонала в местах наземной установки трансформаторов напряжения, а также над шкафами и под шинами, где в целях уменьшения габаритов не соблюдаются изоляционные расстояния.
Вариантов электроснабжения собственных нужд тоже может быть несколько. Трансформаторы собственных нужд (ТСН) могут подключаться к шинам РУ низшего напряжения через выключатель, располагаться между силовым трансформатором и РУ низшего напряжения или стоять на вводе подстанции с защитой предохранителями. Первый способ наиболее характерен сетевым компаниям, так как наличие постоянного оперативного тока и присутствие обслуживающего персонала не вызовет сложности в случае аварии возобновить электроснабжение подстанции, а выключатель обеспечит надёжную релейную защиту ТСН. В нефтегазовой сфере при наличии удалённых необслуживаемых подстанций более остро встаёт вопрос дистанционного (через систему АСУ ТП) восстановления напряжения в послеаварийном режиме. Поэтому преобладают второй и третий способ подключения ТСН, так называемый ТСН до ввода.
Низковольтные кабельные сооружения на подстанции возможны в следующих вариантах:
1) наземные:
- железобетонные лотки поверх железобетонных брусков;
2) надземные:
- металлические лотки по сваям или металлическим стойкам;
- металлические кабельные эстакады.
Данные решения напрямую зависят от свойств грунта и климатических характеристик района. В любом случае от заглубленных кабельных лотков стараются отходить.
Компоновка подстанции должна обеспечивать подъезд машин и механизмов к оборудованию во время ремонта. Для этого при количестве ячеек больше двух предусматриваются сквозные проезды.
Одним из проблемных мест при проектировании и заказе подстанций является выбор изоляции между полимерной и фарфоровой. Опыт эксплуатации объектов сетевых компаний склоняет к возвращению фарфоровой изоляции, тенденция же заводов – наращивание производства оборудования с полимерной изоляцией. У каждого вида есть свои достоинства и недостатки. Чаша весов на сегодняшний день не может склониться в сторону однозначного выбора среди представленных вариантов.
Предпочтительным вариантом заземления подстанции является организация замкнутого контура из горизонтальных и вертикальных заземлителей, выполненных из оцинкованной стали.
Второй тип современных подстанций: ЗАКРЫТЫЕ БЛОЧНО-МОДУЛЬНЫЕ ПОДСТАНЦИИ.
В состав этих подстанций входят блочно-модульные распределительные устройства закрытого типа.
Блочно-модульное здание закрытого распределительного устройства (БМЗ ЗРУ) представляет собой здание из набора нескольких блоков транспортных габаритов со всем установленным и подключенным в заводских условиях основным и вспомогательным энергетическим оборудованием (приборами освещения, охранной и пожарной сигнализации, обогрева, вентиляции, кабельной продукцией и т.д.), за исключением отдельного оборудования, которое предназначено для установки в местах стыковки блоков или не допускает транспортировку в составе блоков по условиям транспортных вибраций, что обеспечивает минимальный объем работ по досборке.
В БМЗ может располагаться оборудование напряжением 0,4 – 35 кВ. Для РУ более высоких классов напряжения, в том числе элегазовых 110, 220 кВ и др., используются более габаритные, быстровозводимые каркасные здания. В этой статье их касаться не будем.
Использование закрытых РУ позволяет оградить оборудование от воздействия внешних факторов (низкой температуры, загрязнения и пр.). При этом можно применить изоляцию с меньшей длиной пути утечки – например, оборудование ЗРУ с изоляцией 2 см/кВ, что соответствует II степени загрязнения. На ОРУ же наиболее применимы значения 2,25 см/кВ для II степени загрязнения и даже 3,1 см/кВ – IV степени загрязнения.
Блочно-модульные здания позволяют разместить РУ внутреннего исполнения с выкатными (КРУ) или стационарными (КСО) элементами. КРУ, в свою очередь, может быть одностороннего или двустороннего обслуживания.
Согласно требованию п.4.2.83 ПУЭ⎘ «закрытые РУ разных классов напряжений, как правило, следует размещать в отдельных помещениях». Для этого монтаж здания производится двухрядным набором модулей с продольным и поперечным соединениями. Но ПУЭ⎘ также допускает установку всего оборудования РУ в одном помещении, если эксплуатироваться оно будет одной организацией. В данном случае «собрать» здание можно одним рядом из модулей только с поперечными связями, а низковольтное оборудование расположить в шкафах вдоль стен, напротив высоковольтного оборудования. Последний вариант является более распространённым, необходимо лишь учитывать все требования ПУЭ⎘ к коридору обслуживания оборудования.
При необходимости в ЗРУ можно выделить следующие помещения:
- высоковольтный отсек;
- отсек низковольтного оборудования;
- отсек ТСН.
ТСН в ЗРУ устанавливается герметичного исполнения, подключается кабелями, отсек оборудуется пандусом без отвода масла в маслосборник согласно требованиям п.4.2.102 ПУЭ⎘.
Помещение аккумуляторной допускается не предусматривать. При этом должны применяться герметичные аккумуляторные батареи с расположением в шкафу и установкой над ними вентиляционного зонта.
Варианты фундаментов БМЗ: свайный с ростверком или ленточный. Ленточный, в свою очередь, может быть монолитным или сборным из фундаментных блоков типа ФБС. Высота установки здания: до 1200 мм, со входной(-ными) площадкой(-ками). Количество входов, как и площадок, определяется длиной здания (см. п. 4.2.94 ПУЭ⎘).
Прокладка высоковольтных кабелей под зданием в земле недопустима, и осуществляется кратчайшим путём по опорным конструкциям с заходом в ячейку через отверстия в раме основания. Низковольтная разводка внутри помещений осуществляется по подвесным лоткам (коробам), вывод наружу через отверстия вверху стены (при наличии кабельных эстакад) либо в полу крайнего(-них) блока(-ков) (при применении на ОРУ лотков).
В блочно-модульном здании, как и в случае с блочным ОРУ, существуют свои «тонкие места», которые нельзя не учитывать. Например, это необходимость создания модулей допустимых габаритов для транспортировки и высоковольтный воздушный ввод через крышу.
Строгое соблюдение требований п.4.2.91 ПУЭ⎘: «при наличии коридора с задней стороны КРУ и КТП для их осмотра ширина его должна быть не менее 0,8 м» и «высота помещения должна быть не менее высоты КРУ, считая от шинных вводов, перемычек или выступающих частей шкафов, плюс 0,8 м до потолка или 0,3 м до балок» способствует возникновению негабарита. Поэтому очень часто при проектировании приходится использовать допущения ПУЭ⎘: «допускаются отдельные местные сужения не более чем на 0,2 м» и «допускается меньшая высота помещения, если при этом обеспечиваются удобство и безопасность замены, ремонта и наладки оборудования КРУ, КТП, шинных вводов и перемычек». Но наиболее распространённый выход из этой ситуации – использование оборудования с односторонним обслуживанием.
Высоковольтный воздушный ввод в блочно-модульное здание можно выполнить через проходные изоляторы, установленные в стене или на крыше. Ввод через крышу исключает необходимость использования шинных мостов внутри помещения, следовательно, снижается высота здания, но это влечет за собой проблемы в эксплуатации из-за возможных протечек при атмосферных осадках. Поэтому рождаются решения с высоковольтным вводом через стену.
Степень огнестойкости здания регламентируется в соответствии с местом его установки: для месторождений – может быть второй, для отдельностоящих подстанций – достаточно четвёртой.
Наружный слой стен и кровли изготавливается из металлического листа толщиной от 0,5 мм, материал утеплителя – со степенью горючести не менее Г1, В2, Д2, Т2, что в совокупности позволяет обеспечивать ЗРУ защиту от прямых ударов молнии, без использования дополнительных средств (таких, как молниеприёмники).
ВЫВОД. Подстанции могут строиться на основе типовых проектов, созданных ещё в советское время: с возведением капитальных сооружений, «комфортным» размещением оборудования, обеспечивающим удобство обслуживания, а могут проектироваться по-новому, современному, с учётом важных экономических составляющих. Два таких примера рассмотрено в настоящей статье. Они представляют собой разные типы построения подстанций, могут относиться к одному или разным классам напряжения, возводиться независимо друг от друга, но могут быть и интегрированы между собой, создавая единый комплекс требуемой надёжности.
Отдельные особенности, отражённые здесь, могут помочь проектировщику в выборе того или иного типа РУ и составлении задания заводу.
СЛУЧАЙ ИЗ ПРАКТИКИ. При проектировании БМЗ ЗРУ 6 кВ Заказчик предъявляет жёсткие требования к габаритам ячеек, но не ограничивая их в размерах, а наоборот:
- Ячейки должны быть стационарные, шириной 900 мм, глубиной не менее 1100 мм.
На вопрос:
- Зачем такие габариты? Большинство современных заводов выпускают более компактные ячейки. На том же пространстве можно разместить резервные.
Последовал ответ руководителя:
- А я их обслуживать как должен? У меня электромонтёры все габаритные, - показывая на живот, - не меньше меня. Один есть маленький, так я его даже уволить не могу – он напьётся, а я терплю. В ячейку, к трансформаторам тока, никто кроме него не залезет!
РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

Сверхлегкие гибкие солнечные панели для крыши
На Всемирной неделе умной энергии 2025 компания Polyshine Solar презентовала свою разработку. Подробнее читайте в нашем канале