Мы уже знаем, что на подавляющем большинстве современных подстанций и электростанций имеются такие накопители электрической энергии, как аккумуляторные батареи. Какие предъявляются к ним требования, каких потребителей они обеспечивают своим бесперебойным питанием и как их подобрать, можно прочитать в нашей статье Выбор аккумуляторной батареи подстанции⎘.
Но какие существуют ещё способы накопления и хранения электрической энергии, чтобы можно было воспользоваться ею в любой удобный для себя момент? Рассмотрим в этом материале.
СОДЕРЖАНИЕ:
- Почему вопрос накопления электрической энергии сейчас встаёт так остро?
- Способы накопления энергии.
- Хранение тепловой энергии.
- Хранение сжатого воздуха или газа.
- Гравитационные накопители.
- Энергия маховика.
- Конденсаторы.
- Гидроаккумулирующие станции.
- Аккумуляторные батареи.
- Свинцово-кислотные аккумуляторные батареи.
- Литий-ионные аккумуляторы.
- Проточные ванадиевые батареи.
1. Почему вопрос накопления электрической энергии сейчас встаёт так остро?
В эпоху доминирования нефти, угля и газа электроэнергетическая отрасль не требует накопления энергии по той лишь причине, что в любой момент времени может легко увеличить или уменьшить выдачу мощности в сеть, добавив или ограничив подачу топлива.
В будущую эпоху, эпоху доминирования возобновляемых источников, прежде всего таких, как ветер и солнце, без накопления не обойтись, так как солнце не светит полные сутки, а ветер не дует без остановки. Вырабатываемую при благоприятных погодных условиях энергию приходится запасать, до 8 часов хранить, а затем повторно её использовать, когда это необходимо. Поэтому многие страны уже сейчас, параллельно с внедрением ВИЭ, активно увеличивают мощность накопителей в своей сети.
2. Способы накопления энергии
Известно много способов накопления электрической энергии. Фантазия людей каждый день рождает всё новые и новые технологии. Мы не сможем перечислить их все. Но выделим следующие основные группы:
- хранение тепловой энергии;
- хранение сжатого воздуха или газа;
- гравитационные накопители (хранение потенциальной энергии);
- энергия маховика (хранение кинетической энергии);
- конденсаторы;
- гидроаккумулирующие станции;
- аккумуляторные батареи.
3. Хранение тепловой энергии
Накопив энергию тепла, можно преобразовать её в электричество. Например, расплавленная соль нагревается с помощью гелиостатов, отражающих солнечный свет на теплоприемник солнечной башни, и направляется в резервуар. По мере необходимости она приводит в действие парогенератор, полученный пар вращает турбину, которая вырабатывает электроэнергию.
Также можно разогреть песок до 500-600℃ внутри изолированного резервуара, а затем передать эту энергию воде для преобразования в электричество или теплоснабжения потребителей.
Некоторые образцы мыльного камня и гранита хорошо подходят для хранения солнечного тепла, демонстрируя высокую плотность энергии и стабильность, что используют в электроэнергетике.
Тепловой насос тоже может служить способом хранения энергии. Когда вырабатывается избыточная ветровая или солнечная энергия, запускается тепловой насос, чтобы нагреть горячий бак, а охладить — холодный. Затем, когда потребности в энергии возрастают, устройство переходит в режим теплового двигателя, преобразуя разницу температур между горячей и холодной накопленной энергией в электричество. И здесь обязательно нужно добавить, что тепловой насос, как необычайно современное устройство, заслуживает отдельной статьи.
Посчитано, что хранение тепловой энергии имеет один из самых низких показателей капитальных затрат среди всех способов хранения, в среднем $232/кВт‧ч.
4. Хранение сжатого воздуха или газа
В периоды минимума нагрузки сети с помощью дешёвого электричества воздух или определённый газ закачивают компрессором в специальный накопитель. Когда нужно получить электроэнергию, сжатый воздух (или газ) выпускают из накопителя, и он приводит в движение турбину генератора.
Соль — прекрасный помощник при хранении. Соляные пещеры представляют собой большие непроницаемые пространства — воздух в них длительное время остаётся сжатым, а кислород в воздухе не реагирует с солью.
Современные объекты по хранению энергии на сжатом воздухе или газе могут похвастаться не только мощностью запасаемой энергии (до 300 МВт), но и длительностью хранения.
Средние капитальные затраты на внедрение превышают первый способ и составляют $293/кВт‧ч.
5. Гравитационные накопители
Построив башни с электродвигателями, можно использовать силу тяжести для преобразования её в электрическую энергию. Двигатели поднимают большие блоки, когда нужно запасти энергию, и опускают, когда она необходима сети.
Применив для этих целей заброшенные шахты, можно добиться тех же результатов. Опуская тяжёлый груз в один ствол глубиной 500 метров, можно выдать около 2 МВт‧ч запасённой электрической энергии в сеть.
Этот способ хранения энергии имеет самый высокий показатель капитальных затрат — $643/кВт‧ч, но может быть реализован в готовой инфраструктуре.
6. Энергия маховика
Маховичный накопитель энергии — накопитель механической энергии, в котором энергия накапливается и сохраняется в виде кинетической энергии вращающегося маховика.
Так при зарядке самой крупной, в настоящий момент, накопительной станции 120 электрических машин работают в режиме двигателя, потребляя электрическую энергию от внешнего источника, и разгоняют маховики. При разрядке они переходят в режим генератора, выдавая электрическую энергию, и замедляют маховики.
Среди главных достоинств такой системы выделяют высокую эффективность, быстрое реагирование и отсутствие необходимости преобразования электроэнергии в другой вид.
7. Конденсаторы
Конденсаторы (или так называемые «суперконденсаторы») представляют собой устройства накопления энергии, состоящие из двух электродов и электролита, способные к быстрой зарядке и разрядке благодаря свойствам адсорбции и десорбции заряда на границе раздела электрод-электролит.
Поскольку накопление энергии в конденсаторах не связано с химическими реакциями, их ёмкость ниже, чем у аккумуляторов, но они полезны для выравнивания мощности возобновляемых источников энергии, требующих многократной зарядки при больших токах, энергии рекуперативного торможения на транспорте, а также компенсации мгновенного падения напряжения при ударах молнии.
Ожидается, что в ближайшем будущем эти накопители будут повсеместно использоваться для хранения энергии в носимых устройствах.
А мы далее перейдём к флагманам накопления энергии.
8. Гидроаккумулирующие станции
Для гидроаккумулирующего хранилища энергии требуется два водоёма на разных высотах. Чем больше разница высот, тем больше мощностью запасаемой (выдаваемой) энергии, с увеличением водоёмов — увеличивается ёмкость хранения энергии. Принцип работы ГАЭС наглядно отражает видео.
Гидроаккумулирующие электростанции в настоящий момент достигают 97% от общего объёма хранения электроэнергии в мире из-за своей низкой стоимости (капитальные затраты, по разным данным, составляют от $120 до $250 за кВт‧ч). Единичная мощность ГАЭС несравнимо больше любого другого накопителя энергии и может достигать 3600 МВт, ёмкость — до 40 ГВт‧ч, а хранить энергию она способна в течение месяцев или даже лет.
ГАЭС можно по праву назвать основоположниками накопления энергии — первые станции начали свою работу ещё в конце XIX века, а работа по их внедрению не прекращается и по сей день.
9. Аккумуляторные батареи
Аккумуляторная батарея — это химический накопитель электрической энергии. Аккумуляторные батареи предпочтительны для хранения энергии от нескольких секунд до нескольких часов, и это самый внедряемый сейчас способ хранения энергии в мире. Только в 2023 году развёртывание аккумуляторов в энергетическом секторе увеличилось более чем на 130%, добавив в общей сложности 42 ГВт установленной мощности по всему миру. И, согласно прогнозам, общая мощность аккумуляторов увеличится ещё в шесть раз к 2030 году.
Капитальные затраты при строительстве самых распространённых сегодня литий-ионных систем в среднем составляют $304/кВт‧ч, что превышает большинство других способов, но в два раза меньше стоимости гравитационных накопителей.
Наиболее широко используются сейчас три технологии аккумуляторных батарей:
- свинцово-кислотная;
- литий-ионная;
- ванадиевая редокс-проточная технология.
Но также известны батареи:
- литий-железо-фосфатные⎘;
- серно-селеновые твердотельные⎘;
- атомные⎘;
- протонные⎘;
- литий-серные;
- алюминиево-ионные;
- цинк-ионные и др.
На первых трёх технологиях остановимся подробнее.
10. Свинцово-кислотные аккумуляторные батареи
Свинцово-кислотные батареи являются наиболее коммерчески зрелой аккумуляторной технологией.
Несмотря на то, что свинец — токсичный металл, уровень переработки свинцовых аккумуляторов составляет 99%, поэтому негативное воздействие этого источника на окружающую среду считается минимальным. Свинец лучше всего работает на короткой и средней «дистанции» (от нескольких минут до четырёх часов работы), особенно в ситуациях, когда глубина разряда довольно мала. Свинцовые батареи могут служить до 30 лет, а доступность металла при добыче не вызывает проблем. По этим причинам, устаревающая и малоэффективная (25-40 Вт⋅ч/кг) технология до сих пор находит своё место от крупных электрических станций и подстанций до автомобилей.
11. Литий-ионные аккумуляторы
Литий-ионные аккумулятор — самый распространённый способ накопления и сохранения электрической энергии в наши дни, находящий своё применение от крупных аккумуляторных хранилищ до небольших переносных устройств.
Эти батареи имеют много недостатков. Их средний срок службы составляет от 5 до 15 лет, после чего они теряют как минимум 20% ёмкости. Уровень переработки лития не превышает 5% из-за стоимости и сложности процесса. Есть страны-лидеры по добыче критического сырья, такие как Австралия, Китай и Чили, но в остальных — его очень мало. Литиевые батареи чувствительны к высоким температурам и легко воспламеняются. Литиевые батареи, как и свинцовые, наиболее эффективны лишь при короткой или средней продолжительности использования. Но их плотность энергии пока выше основных конкурентов (около 250 Вт‧ч/кг). Благодаря последнему фактору литиевые батареи так активно внедряются во все сферы деятельности человека, хотя развитие новых технологий, с растущими показателями эффективности, может остановить этот процесс уже в обозримом будущем.
12. Проточные ванадиевые батареи
Несмотря на то, что технология проточных ванадиевых окислительно-восстановительных батарей существует уже более 50 лет, она является наименее зрелой с коммерческой точки зрения.
Проточный аккумулятор состоит из двух ёмкостей и ядра. В ёмкостях находятся два различных по составу электролита, которые прокачиваются при помощи насосов через ядро. Сами электролиты при прохождении через ядро не смешиваются, а лишь их ионы, проникая через перегородку, создают разность потенциалов на электродах.
Ванадий лучше всего подходит для длительного хранения энергии (шесть часов и более). Главными достоинствами таких батарей являются отсутствие саморазряда при отключённой нагрузке и насосах, а также большой срок службы (свыше 30 лет) с падением ёмкости лишь на 1,7% через 1200 циклов перезаряда. Из недостатков можно отметить стоимость, невысокую мгновенную мощность и отнесение ванадия в список критически важных минералов.
ВЫВОД
Можно долго спорить, какой способ выбрать для накопления своей электрической энергии. Каждый случай индивидуален. Но с уверенностью предположим, что лучший способ ещё не изобретён.
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:
- Технологии длительного хранения готовы вытеснить литий-ионные аккумуляторы. Мария Майш. Опубликовано: pv-magazine.com⎘.
- Быстрое расширение производства аккумуляторных батарей будет иметь решающее значение для достижения целей по климату и энергетической безопасности, поставленных на КС-28. Отчёт МЭА. Опубликовано: iea.org⎘.
- Сравнение химических составов аккумуляторов для решений по хранению энергии. Опубликовано: cleantechnica.com⎘.
- Проточный аккумулятор — что это и каковы его перспективы. Лампа Электрика. Опубликовано: dzen.ru⎘.
P.S. СОВЕТЫ ПО УВЕЛИЧЕНИЮ СРОКА СЛУЖБЫ АККУМУЛЯТОРНЫХ БАТАРЕЙ ОТ УЧЁНЫХ И ПРОИЗВОДИТЕЛЕЙ:
- Самая первая зарядка литий-ионных батарей при необычно высоких токах увеличивает их средний срок службы на 50-70%.
- Необходимо соблюдать «комфортный» диапазон температур при эксплуатации (от 0 до 35 ℃).
- Ограничивать зарядку до 80% от полной ёмкости и не позволять ей опускаться ниже 20%.
- Не оставлять зарядку на длительный период, например на ночь.
- Контролировать состояние батареи на предмет излишнего нагрева.
- Зарядка импульсным током (до 2000 Гц), в отличие от зарядки постоянным, может также значительно продлить срок службы батареи, но эксперименты учёных пока не подтверждены практикой.