ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «ФЕДЕРАЛЬНАЯ СЕТЕВАЯ КОМПАНИЯ ЕДИНОЙ ЭНЕРГЕТИЧЕСКОЙ СИСТЕМЫ»

СТАНДАРТ ОРГАНИЗАЦИИ ОАО «ФСК ЕЭС»

CTO 56947007-29.240.55.143-2013

Методика расчета предельных токовых нагрузок по условиям сохранения механической прочности проводов и допустимых габаритов воздушных линий

Стандарт организации

Дата введения: 13.02.2013

Дата введения изменений: 19.01.2015 Дата введения изменений: 02.11.2016 Дата введения изменений: 07.09.2017

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27.12.2002 № 184-ФЗ «О техническом регулировании», объекты стандартизации и общие положения при разработке и применении стандартов организаций Российской Федерации – ГОСТ Р 1.4-2004 «Стандартизация в Российской Федерации. Стандарты организаций. Общие положения», общие требования к построению, изложению, оформлению, содержанию и обозначению межгосударственных стандартов, правил и рекомендаций по межгосударственной стандартизации и изменений к ним - ГОСТ 1.5-2001, правила построения, изложения, оформления и обозначения национальных стандартов Российской Федерации, общие требования к их содержанию, а также правила оформления и изложения изменений к национальным стандартам Российской Федерации - ГОСТ Р 1.5-2012.

Сведения о стандарте организации

- 1. РАЗРАБОТАН: ООО «ТМК-Центр».
- 2. ВНЕСЁН: Департаментом оперативно-технологического управления, Департаментом инновационного развития.
- 3. УТВЕРЖДЁН И ВВЕДЁН В ДЕЙСТВИЕ: Приказом ОАО «ФСК ЕЭС» от 13.02.2013 № 97
- 4. СОГЛАСОВАН с ОАО «СО ЕЭС» письмом от 08.02.2011 № Б11-IV-19-1418.
- 5. ИЗМЕНЕНИЯ ВВЕДЕНЫ: Приказом ОАО «ФСК ЕЭС» от 19.01.2015 № 9 в разделы: 1, 4, 6.2, 8. Включен новый раздел 9. Дополнены Приложения А, Е, Ж, З, И.
- 6. СОГЛАСОВАН: с ОАО «СО ЕЭС» письмом от 18.12.2014 № Б15-19-16289.
- 7. ИЗМЕНЕНИЯ ВВЕДЕНЫ: Приказом ПАО «ФСК ЕЭС» от 02.11.2016 № 394 в разделы: 1, 4, 6.2, 6.3, 8. Дополнены Приложения А, Б, В, Г, З, И, Библиография.
- 8. СОГЛАСОВАН: с АО «СО ЕЭС» письмом от 21.09.2016 № Н14-19-11560.
- 9. ИЗМЕНЕНИЯ ВВЕДЕНЫ: Приказом ПАО «ФСК ЕЭС» от 07.09.2017 № 362 в разделы: 4, 5, 6.2, 7, 9, Содержание, Приложения В, Ж, 3.
- 10. СОГЛАСОВАН: с АО «СО ЕЭС» письмом от 14.08.2017 № Б14-І-3-19-9949.
- 11. ВВЕДЁН: с изменениями (Приказ ОАО «ФСК ЕЭС» от 19.01.2015 № 9, Приказ ПАО «ФСК ЕЭС» от 02.11.2016 № 394, Приказ ПАО «ФСК ЕЭС» от 07.09.2017 № 362).

Замечания и предложения по стандарту организации следует направлять в Департамент инновационного развития ПАО «ФСК ЕЭС» по адресу: 117630, Москва, ул. Ак. Челомея, д. 5А, электронной почтой по адресу: vaga-na@fsk-ees.ru.

Настоящий документ не может быть полностью или частично воспроизведён, тиражирован и распространён в качестве официального издания без разрешения ПАО «ФСК ЕЭС».

Содержание

1 Область применения	4
2 Нормативные ссылки	
3 Сокращения	
4 Термины и определения	
5 Расчет длительно и аварийно допустимого тока	
6 Расчет допустимой температуры по условию сохранения допустимых	
габаритов ВЛ	9
6.1 Удельная нагрузка	
6.2 Измерения габаритов ВЛ	9
6.3 Расчет допустимой температуры провода	14
7 Время существования допустимого и аварийного режима	15
8 Выбор расчетных климатических условий	16
9 Оформление результатов расчета	18
Приложение А. Механические и электрические характеристики	
проводов	19
Приложение Б. Физико-механические характеристики проводов	21
Приложение В. Расчет теплоотдачи с поверхности провода	22
Приложение Г. Учет солнечной радиации при расчете допустимого	
тока	25
Приложение Д. Расчет температуры провода	27
Приложение Е. Точный расчет допустимой температуры провода по	
условию сохранения допустимых габаритов ВЛ	28
Приложение Ж. Точный расчет допустимого времени нагрева провода	32
Приложение 3. Максимальные значения длительно и аварийно	
допустимых токов	33
Приложение И. Форма представления результатов расчета допустимых	
токовых нагрузок ВЛ с учетом ограничений по оборудованию ПС	41
Библиография4	.2

1 Область применения

Настоящий стандарт организации (СТО, далее - Методика) применяется при определении допустимой токовой нагрузки на вновь сооружаемых, реконструируемых и действующих воздушных линиях (ВЛ) электропередачи напряжением 110 кВ и выше, выполненных неизолированными проводами, при различных климатических условиях в нормальном и аварийном режимах, а также для определения допустимой токовой нагрузки ошиновок, шин, выполненных неизолированными проводами, напряжением 110 кВ и выше.

2 Нормативные ссылки

ГОСТ 839-80 Провода неизолированные для воздушных линий электропередачи. Технические условия (с Изменениями № 1 – 2).

3 Сокращения

- C теплоемкость;
- c удельная теплоемкость (пр *провода*; ал *алюминия*; ст *стали*; Γ *гололеда*);
- d диаметр (пр npoвoda; пр э npoвoda эквивалентный; пров npoвoлoки);
- E модуль упругости провода;
- F площадь поверхности теплообмена;
- *g* ускорение свободного падения;
- *Gr* критерий Грасгофа;
- H высота прокладки трассы линии над уровнем моря;
- н высота (с угловая Солнца; пр подвеса провода; преп препятствия;
 з габарит до земли; з и измеренный габарит до земли; г преп габарит до препятствия; преп и измеренный габарит до препятствия;
 з доп допустимый габарит до земли; преп доп допустимый габарит до препятствия;
 1 подвеса провода на первой опоре;
 2 подвеса провода на второй опоре);
- Δh разность высот подвеса провода;
- Ток (дл доп длительно допустимый; ав доп аварийно допустимый;
 г доп допустимый по габаритам; эо доп допустимый по оборудованию; д допустимый; ав аварийный);
- k коэффициент (п учитывающий поверхностный эффект; м учитывающий магнитные потери в стали; ψ зависимости теплоотдачи от угла атаки ветра; H учета влияния высоты прокладки трассы линии на теплоту солнечного излучения; мес зависимости интенсивности солнечного излучения от времени года);
- длина (пр пролета; б большого эквивалентного пролета; м малого эквивалентного пролета; р расчетная; преп до препятствия от опоры);
- m масса в 1 метре (пр *провода*; ал *алюминия*; ст *стали*);
- n количество (пров npoволок);

- *Nu* критерий Нуссельта;
- P тепловая мощность (в *отдаваемая проводом в воздух;* с *солнечного излучения*);
- *R* активное сопротивление (20 удельное провода при 20 °C);
- *Re* критерий Рейнольдса (э эквивалентный);
- S сечение (пр npoвoda);
- *t* время (ав нагрева провода в аварийном режиме);
- *v* скорость ветра;
- W интенсивность (р солнечной радиации);
- *x* абсцисса;
- у ордината;
- α коэффициент теплоотдачи (к *при конвективном теплообмене*; л- *при лучистом теплообмене*);
- β температурный коэффициент (r $conpomus_nehus$; в $объемного расширения воздуха; <math>\pi$ π π -
- у удельная нагрузка на провод (1 *от собственной массы*);
- постоянная (и излучения; п поглощения);
- λ коэффициент теплопроводности (в воздуха);
- ν кинематический коэффициент вязкости (в *воздуха*);
- σ механические напряжение (0 в низшей точке провода; р расчетное);
- τ постоянная времени;
- температура (в воздуха; пр провода; дл доп длительно допустимая;
 г доп допустимая по условию сохранения габаритов; ав доп аварийно допустимая; д допустимая; и измеренная; пр уст провода установившаяся; пр исх провода исходная);
- ф широта местности;
- угол (в атаки ветра; с наклона солнечных лучей; л линии по отношению к меридиану).

Примечание. В скобках приведено обозначение индексов.

4 Термины и определения

Нормальный режим - режим работы сети, при котором ток по ВЛ не превышает длительно допустимого значения по условию сохранения механической прочности проводов при заданных климатических условиях.

Допустимый режим - режим работы сети, при котором ток по ВЛ превышает длительно допустимый по условию сохранения механической прочности проводов, но не превышает аварийно допустимого тока при заданных климатических условиях.

Аварийный режим - режим работы сети, при котором ток по ВЛ превышает аварийно допустимый ток при заданных климатических условиях.

Длительно допустимый ток, $I_{\text{дл доп}}$ - ток, нагревающий провод при заданных климатических условиях до длительно допустимой температуры по условиям механической прочности провода, $9_{\text{дл доп}}$.

Аварийно допустимый ток, $I_{\rm aB\ доп}$ - ток, нагревающий провод при заданных климатических условиях до аварийно допустимой температуры, $9_{\rm aB\ доп}$.

Длительно допустимая температура провода по условиям механической прочности провода, $\theta_{дл доп}$ - температура, составляющая 70 °C, согласно ПУЭ-6 [1], п. 1.3.22.

Длительно допустимая температура для проводов марок, не предусмотренных ГОСТ 839, определяется по данным завода изготовителя.

Аварийно допустимая температура провода, $\theta_{\text{ав доп}}$, - температура, равная меньшему из двух значений:

- по условию механической прочности провода (определяется согласно ГОСТ 839):
 - для алюминиевых и сталеалюминевых проводов 90 °C;
- для медных проводов 80 °C; для проводов марок, не предусмотренных ГОСТ 839, определяется по данным заводов изготовителей;
- по условию сохранения габаритов ВЛ до земли, препятствий и пересечений, $\theta_{\rm r\, доп}$, (определяется по алгоритму, приведенному ниже (п. 6.3). Допустимые габариты определяются согласно ПУЭ-7 (глава 2.5).
 - [1] Здесь и далее, в Методике следует применять нормированные значения минимально допустимых расстояний от проводов до различных объектов, приведенные в Правилах устройства электроустановок того издания, по которому была спроектирована, сооружена или реконструирована ВЛ, и для которой рассчитывается допустимая токовая нагрузка.

При определении соответствия габаритных расстояний нормативным требованиям ПУЭ-7 следует руководствоваться следующими положениями:

- 1) Наименьшее расстояние от проводов ВЛ до поверхности земли должно оцениваться при наибольшей допустимой токовой нагрузке для ВЛ 750 кВ и выше в ненаселенной, труднодоступной местности и недоступных склонах.
- 2) Наименьшее расстояние от проводов ВЛ до поверхности земли, производственных зданий и сооружений должно оцениваться при наибольшей допустимой токовой нагрузке для ВЛ 330 кВ и выше в населенной местности.
- 3) Расстояние от проводов ВЛ до поверхности земли для ВЛ 500 кВ и ниже в ненаселенной, труднодоступной местности и недоступных склонах, а также расстояние от проводов ВЛ до поверхности земли, производственных зданий и сооружений для ВЛ 220 кВ и ниже в населенной местности оценивается на основе следующего алгоритма:
 - 3.1) на основе полного состава измеренных исходных данных определяются механические характеристики провода в каждом из пролётов ВЛ (составляется модель пролётов).

- 3.2) для полученной модели пролётов ВЛ рассчитываются габаритные расстояния при отсутствии токовой нагрузки в линии, солнечной радиации при чистом воздухе (ясно), минимальной скорости ветра, равной 0,6 м/с (направление перпендикулярно проводу), и температуре воздуха не менее абсолютной максимальной температуры воздуха региона прохождения ВЛ.
- 3.3) в случае, если хотя бы на одном из пролётов ВЛ, рассчитанному по п. 3.2, габаритное расстояние меньше нормативных требований ПУЭ-7 считается, что вся ВЛ имеет недопустимые габаритные расстояния.
- 3.4) в случае, если на всех пролётах ВЛ рассчитанное по п.3.2 габаритное расстояние не менее нормативных требований ПУЭ-7 считается, что вся ВЛ имеет допустимые габаритные расстояния, а токовая нагрузка провода ВЛ должна быть ограничена только по условию сохранения его механической прочности (определяется согласно ГОСТ 839).

Аналогичным алгоритмом определения соответствия габаритных расстояний нормативным требованиям ПУЭ-7 следует руководствоваться и при прочих, указанных в п. 2.5 ПУЭ-7, условиях (пересечение ВЛ с автомобильными дорогами, железными дорогами, водными пространствами, между собой и пр.).

Расчет предельных токовых нагрузок для ошиновки, шин следует проводить по условиям механической прочности провода (аналогично расчёту для провода ВЛ), без учета условий сохранения габаритов до земли, используя характеристики провода.

При расчете предельных токовых нагрузок ВЛ, параметры ошиновки, выполненной жесткими шинами, следует принимать и учитывать аналогично параметрам другого оборудования ПС (выключатель, разъединитель, высокочастотный заградитель, трансформатор тока), причем аварийнодопустимый ток жесткой ошиновки может достигать 120 % от номинального значения.

5 Расчет длительно и аварийно допустимого тока

В случае, если ВЛ состоит из участков с проводами различной марки или сечения, а также если климатические условия меняются по длине линии, то допустимые токи рассчитываются для каждого участка. При этом, в качестве допустимого тока по ВЛ принимается наименьшее из расчетных значений. Допустимый ток по ВЛ (или ее участку) определяется по формуле

$$I_{\rm II} = \sqrt{\frac{P_{\rm B} - P_{\rm C}}{k_{\rm M} k_{\rm II} R_{20} (1 + \beta_r (\vartheta_{\rm II} - 20))}},$$

где $I_{\rm д}$ - допустимый ток ($I_{\rm дл \, доп}$, $I_{\rm ав \, доп}$); $\vartheta_{\rm д}$ - допустимая температура провода (соответственно $\vartheta_{\rm дл \, доп}$, $\vartheta_{\rm ав \, доп}$); $P_{\rm B}$ - мощность отдаваемая проводом в воздух за счет конвективного теплообмена и излучения, Вт; $P_{\rm c}$ - мощность солнечного излучения, поглощаемая проводом, Вт; $R_{\rm 20}$ - сопротивление 1м провода при температуре 20 °C, Ом; β_r - температурный коэффициент сопротивления, 1/°C; $k_{\rm II}$ - коэффициент, учитывающий поверхностный эффект; $k_{\rm M}$ - коэффициент, учитывающий магнитные потери в стальном сердечнике.

Сопротивление провода при 20 °C, R_{20} , определяется в соответствии с ГОСТ 839 (Приложение A), в котором приведены значения сопротивления постоянному току, для переменного тока необходимо учитывать поверхностный эффект и магнитные потери в стальном сердечнике.

Коэффициент, учитывающий поверхностный эффект для постоянного тока и проводов без стального сердечника равен 1,0. Коэффициент, учитывающий поверхностный эффект для переменного тока зависит от конструкции провода и соотношения сечений стального сердечника и алюминиевой части, изменяется в пределах k_n =1,00÷1,05 [4]. Коэффициент может быть определен опытным путем. При отсутствии данных необходимо принимать k_n =1,05.

Величина $k_{\rm M}$ зависит от количества повивов алюминия поверх стального сердечника. Магнитные потери максимальны для одноповивного провода минимальны при четном количестве повивов, так как вследствие противоположного направления скрутки смежных повивов в проводах общепринятой конструкции магнитодвижущие действующие силы, сердечнике И создаваемые токами повивов, частично взаимно компенсируются [4]. Рекомендуется принимать следующие значения коэффициента:

 $k_{\rm M}$ =1,15 - для 1-го слоя алюминия;

 $k_{\rm M}$ =1,04 - для 2-х слоев алюминия;

 $k_{\text{\tiny M}} = 1,10$ - для 3-х слоев алюминия.

Значения температурных коэффициентов сопротивления для различных материалов:

• алюминий -
$$\beta_r = 0.00403 \frac{1}{^{\circ}\text{C}}$$
;

• медь -
$$\beta_r = 0.00396 \frac{1}{^{\circ}\text{C}};$$

• сталь -
$$\beta_r = 0.00600 \frac{1}{^{\circ}\text{C}}$$
.

Расчет мощности, отдаваемой проводом в воздух, выполняется в соответствии с приложением В. Расчет мощности солнечного излучения, поглощаемой проводом, выполняется в соответствии с Приложением Г.

6 Расчет допустимой температуры по условию сохранения допустимых габаритов ВЛ

6.1 Удельная нагрузка

Удельные нагрузки γ , $H/(\text{м}\cdot\text{мм}^2)$ на провода и тросы учитывают механические силы массы проводов и гололедных образований, а также давление ветра на провода без гололеда или с гололедом. Переход от массы к механической силе осуществляется умножением на ускорение свободного падения. Удельные нагрузки относятся к единице длины и единице поперечного сечения провода или троса и применяются во всех расчетах конструктивной части ВЛ в качестве исходных величин.

При расчете допустимой температуры по условию сохранения допустимых габаритов не учитывается нагрузка от ветра и гололеда, поэтому удельная нагрузка на провод равна нагрузке от собственной массы

$$\gamma_1 = \frac{9.81 m_{\text{mp}} \cdot 10^{-3}}{S_{\text{mp}}},$$

где $m_{\rm np}$ - масса 1 м провода или троса, кг, (Приложение A); $S_{\rm np}$ - полное поперечное сечение провода или троса (для комбинированных проводов - суммарное сечение токоведущей части и сердечника из материала высокой прочности), мм² (Приложение A); 9,81 м/с² - ускорение свободного падения.

6.2 Измерения габаритов ВЛ

Для расчета допустимой температуры провода по условию сохранения габаритов ВЛ до земли, препятствий и пересечений необходимо выполнить замеры габаритов ВЛ. Для измерения стрел провеса, габаритов и длин пролетов можно использовать: высокоточный теодолит, ультразвуковой измеритель расстояний, лазерный дальномер, электронный тахеометр. Можно использовать также данные аэросканирования линий. При этом необходимо производить измерение климатических условий, тока ВЛ и, по возможности, измерение температуры провода.

Измерения габарита до земли необходимо производить в середине пролета, при этом необходимо учитывать возможные складки местности. Высота снежного покрова, травы и древесно-кустарниковой растительности не учитывается при выполнении замеров.

Данные измерений заносятся в Таблицу 6.1.

Температура провода может измеряться с помощью тепловизора или пирометра. При невозможности измерения температура провода определяется расчетным путем по Приложению E.

По измеренным (рассчитанным) значениям габарита до земли в средине пролета и температуры провода по формуле (Е.1) (Приложение Е) рассчитывается значение механического напряжения в нижней точке провеса провода σ_{0p} , которое используется для расчета габаритов пролета ВЛ при различных значениях температуры провода.

При невозможности измерения габарита провода в средине пролета, например, при пересечении ВЛ водных препятствий или в горных условиях, необходимо выполнить два замера габаритов провода до земли в различных точках пролета. В этом случае, значение механического напряжения в нижней точке провеса провода σ_{0p} рассчитывается по формуле (Е.2) (Приложение Е). При этом, данные измерений заносятся в Таблицу 6.2.

Таблица 6.1

1405	ица 0.1																											
MM.FFFF					l, M	Высота подвеса	провода, м	Высота основания	опоры над уровнем моря, м	в середине пролёга, м	середине пролёта, м		Минимальное расстояние между проводом и	SCMJICH			В пролёте имеются пересечения						ı	ее время)				В
Дата и время замера, чч.мм.дд.мм.ггтг	№ пролёта, (Neon.1-Neon.2)	Измеряемая фаза	Марка провода	Тип местности	Расстояние между опорами,	оп.1	оп.2	оп.1	оп.2	Габарит от провода до земли в середи	Высота земли над уровнем моря в серед	Габарит от провода до земли, м	Расстояние от оп.1, м	Высота земли над уровнем моря, м	Тип пересекаемого объекта	Расстояние от оп.1 до пересечения, м	Габарит от провода верхней (пересекающей) ВЛ до земли в месте пересечения, м	Габарит от провода (троса) нижней (пересекаемой) ВЛ до земли (либо высота пересекаемого объекта), м	Высота земли над уровнем моря в месте пересечения, м	Ток в ВЛ, А	Температура воздуха, ⁰ С	Ветер, м/с	Направление ветра, град	Погодные условия (ясно, облачно, пасмурно, вечернее	Географическая широта	Район по гололёду	Район по ветру	Комментарии и пояснения
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	21	22	23	24	25	26	27	28	29	30

Примечания.

- 1. В графе 3 указывается фаза (фазы), по которой произведены замеры, в формате: «А», «В», «С», «АВ», «АС», «ВС», «АВС».
- 2. В графе 5 указывается тип местности: населенная, ненаселенная, труднодоступная, недоступные склоны.
- 3. Данные в графах с 13 по 15 заносятся для описания профиля трассы.
- 4. Значения в графы с 16 по 20 заносятся только при наличии пересечений в пролете.
- 5. В графе 16 указывается тип пересекаемого объекта: ВЛ (с указанием класса напряжения), здание, автомобильная дорога, железная дорога, трамвайная линия, троллейбусная линия и пр.
- 6. В графах 18, 19 измерение производится в точке наименьшего габарита между проводом и пересекаемым объектом.
- 7. В графу 12, 15 и 20 заносятся значения высоты земли над уровнем моря в измеряемой точке. Высота над уровнем моря может быть учтена по координатам местности посредством GPS/ГЛОНАСС приемников, замеров с использованием портативных метеостанций и др. приборов.
- 8. В графе 21 указывается ток в ВЛ на момент измерения габаритов.
- 9. В графе 22 указывается температура воздуха на момент измерений.
- 10. В графе 23 указывается сила ветра, с учетом поправочных коэффициентов Таблицы 8.1, на момент измерения габаритов (измеряется на месте при наличии соответствующего прибора, либо заполняется по ориентировочным данным Гидрометцентра).
- 11. В графе 24 указываются направление ветра. При сложности точного определения направления ветра допускается применение усредненных значений: 0 град, 45 град, 90 град. При наличии порывов ветра, связанных с изменением направления ветряных потоков, в графу заносится значение 0 град.
- 12. В графе 25 указываются погодные условия: ясно, облачно пасмурно, вечернее время.
- 13. В графу 26 географическая широта может определяться с помощью программы Гугл Планета Земля (Google Earth), используя точную информацию о координатах опор ВЛ.
- 14. При наличии нескольких пересечений в одном пролете, необходимо дублировать пролет строчкой ниже с занесением новых значений в графы с 15 по 20.
- 15. Для более полного учета профиля трассы, замеры габаритных расстояний до земли в некоторых случаях следует проводить более чем в одной точке. Пример: если пролет пересекает большой овраг (речку), требуется проводить замеры минимальных габаритных расстояний от провода до земли по обоим склонам (берегам).

Таблица 6.2

	ица О.				I, M	Высота подвеса	провода, м	Высота основания	опоры над уровнем моря, м	в точке №1, м	в точке №1, м	Nè1 m	точке №2, м	в точке №2, м	Ne2m	M	минимальное расстояние между проводом и	Semplen			В пролёте имеются пересечения						ĭ	ее время)				19
Дата и время замера, чч.мм.дд.мм.ггтг	№ пролёта (Меон.1-Меон.2)	Измеряемая фаза	Марка провода	Тип местности	Расстояние между опорами,	оп.1	оп.2	оп.1	оп.2	Габарит от провода до земли в то	Высота земли над уровнем моря в 1	Расстояние от оп.1, до точки №1м	Габарит от провода до земли в то	Высота над уровнем моря в точі	Расстояние от оп.1, до точки №2м	Габарит от провода до земли, м	Расстояние от оп.1, м	Высота земли над уровнем моря, м	Тип пересекаемого объекта	Расстояние от оп.1 до пересечения, м	Габарит от провода верхней (пересекающей) ВЛ до земли в месте пересечения, м	Габарит от провода (троса) нижней (пересекаемой) ВЛ до земли (либо высота пересекаемого объекта), м	Высота земли над уровнем моря в месте пересечения, м	Ток в ВЛ, А	Температура воздуха, ⁰ С	Ветер, м/с	Направление ветра, град	Погодные условия (ясно, облачно, пасмурно, вечернее время)	Географическая широта	Район по гололёду	Район по ветру	Комментарии и пояснения
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33

6.3 Расчет допустимой температуры провода

При одинаковой высоте подвеса провода (разность высот подвеса проводов составляет менее 10 % от длины пролета) и длине пролета менее 450 м допустимую температуру провода по условию сохранения допустимых габаритов до земли можно определить следующим образом.

Сначала выполняются расчеты габаритов ВЛ в наиболее проблемных пролетах. Проблемными являются пролеты, у которых по данным измерений (п. 4.2) габарит менее, чем на 1 м больше допустимого по ПУЭ значения. При этом учитываются:

- измеренный габарит ВЛ до земли, $h_{3\mu}$, м;
- измеренный габарит до препятствия, $h_{\text{преп и}}$, м;
- измеренная температура провода, $\theta_{\rm u}$, °C.

Допустимая температура по условию сохранения допустимого габарита до земли определяется по формуле:

$$\vartheta_{\Gamma \text{ доп}} = \vartheta_{\text{и}} + \frac{\gamma_{1} l_{\text{пр}}^{2}}{8\beta_{\text{л}} E} \left(\frac{1}{h_{\text{пр}} - h_{3 \text{ u}}} - \frac{1}{h_{\text{пр}} - h_{3 \text{ доп}}} \right) - \frac{8}{3\beta_{\text{л}} l_{\text{пр}}^{2}} \left(\left(h_{\text{пр}} - h_{3 \text{ u}} \right)^{2} - \left(h_{\text{пр}} - h_{3 \text{ доп}} \right)^{2} \right),$$

где $l_{\rm np}$ - длина пролета ВЛ, м; E - модуль упругости провода, ${\rm H/mm^2}$ (Приложение Б); $\beta_{\rm J}$ - температурный коэффициент линейного удлинения, град⁻¹ (Приложение В); $h_{\rm np}$ - высота подвеса провода, м; $h_{\rm 3~don}$ - допустимое расстояние до земли по ПУЭ.

Допустимая температура по условию сохранения допустимого габарита до препятствия или пересечения определяется по приведенной выше формуле путем подстановки вместо $h_{3\,\,\mathrm{доп}}$ значения габарита до земли h_{3} , при котором нарушается допустимый габарит до препятствия $h_{\mathrm{преп}\,\,\mathrm{доп}}$. Габарит h_{3} рассчитывается по формуле:

$$h_3 = h_{\Pi p} - \frac{l_{\Pi p}^2 \left(h_{\Pi p} - h_{\Pi p e \Pi \ ДО\Pi} - h_{\Pi p e \Pi} \right)}{4 l_{\Pi p e \Pi} \left(l_{\Pi p} - l_{\Pi p e \Pi} \right)},$$

где $h_{\rm преп}$ - высота препятствия, м; $l_{\rm преп}$ - расстояние от препятствия до ближайшей опоры, м; $h_{\rm преп\ доп}$ - допустимый габарит до препятствия по ПУЭ.

Более точно допустимая температура провода рассчитывается в соответствии с приложением Е. Расчеты с использованием формул приложения Ж необходимо выполнять при соблюдении одного из следующих условий:

- длина пролета превышает 450 м;
- разность высот подвеса провода на опорах, отнесенная к длине пролета составляет более 0,1;
 - сложный профиль трассы с возвышенностями и впадинами.

Значение допустимой температуры для линии принимается равным минимальной рассчитанной температуре провода для всех пролетов ВЛ, для которых произведен расчет.

7 Время существования допустимого и аварийного режима

Время существования допустимого режима ВЛ, шин, ошиновок (ток превышает длительно допустимый, но меньше аварийно допустимого) определяется в зависимости от их технического состояния. Техническое состояние определяется наличием мест локального перегрева провода: болтовых контактных соединений, линейной арматуры из магнитного материала. Места локального перегрева провода могут выявляться на основании тепловизионного контроля. В случае отсутствия на линии мест повышенного локального нагрева в местах соединения и подвески проводов, время существования допустимого режима ВЛ, шин, ошиновок (время работы с токовой нагрузкой не превышающей аварийно допустимого значения) составляет не более 24 часов. В случае наличия на линии мест повышенного локального нагрева в местах соединения и подвески проводов, необходимо принять меры по скорейшему устранению дефекта и замене соответствующих элементов. При этом временно, до устранения дефекта и ограничивающего элемента, значение аварийно допустимой температуры провода может быть снижено на величину локального перегрева провода (разность между температурой провода в месте локального перегрева и температурой провода).

Допустимое время существования аварийного режима (ток превышает аварийно допустимое значение) определяется временем нагрева провода от его температуры в нормальном режиме до аварийно допустимой температуры при заданных климатических условиях и при токе равном 1,2 $I_{\rm ab~дon}$. Для определения минимального времени существования аварийного режима, при отсутствии точных данных, принимается, что провод в нормальном режиме был нагрет до длительно допустимой температуры 70 °C.

Приближенно время нагрева провода в аварийном режиме, $t_{\rm as}$ определяется по формуле:

$$t_{\rm aB} = \tau \ln \frac{9_{\rm пр\ ycr} - 9_{\rm пр\ иcx}}{9_{\rm пр\ ycr} - 9_{\rm aB\ доп}},$$

где
$$\vartheta_{\text{пр уст}} = \frac{k_{\text{M}}k_{\text{\Pi}}I_{\text{ав}}^2R_{20}\left(1-20\beta_r\right) + P_c + \left(\alpha_{\text{K}} + \alpha_{\text{Л}}\right)F\vartheta_{\text{B}}}{\left(\alpha_{\text{K}} + \alpha_{\text{Л}}\right)F - k_{\text{M}}k_{\text{\Pi}}I_{\text{ав}}^2R_{20}\beta_r}$$
 - установившаяся

температура провода при аварийном токе $I_{\rm ab}$, здесь F - площади поверхности теплоотдачи провода (см. приложение B);

$$\tau = \frac{C}{\left(\alpha_{\rm K} + \alpha_{\rm J}\right)F - k_{\rm M}k_{\rm H}I_{\rm AB}^2R_{20}\beta_r} \quad \text{- постоянная времени нагрева, здесь}$$

C - теплоемкость провода; $\vartheta_{\rm np\; ucx}$ - исходная температура провода

(в нормальном режиме), при отсутствии данных о токе в нормальном режиме принимается равной 70 °C.

Теплоемкость провода определяется по формулам:

• для провода, состоящего из одного материала (алюминия, меди или стали)

$$C = c_{\Pi p} m_{\Pi p}$$
,

• для провода, состоящего из нескольких материалов (например, алюминия и стального сердечника)

$$C = c_{\text{all}} m_{\text{all}} + c_{\text{CT}} m_{\text{CT}}$$

где $c_{\rm np}$ - удельная теплоемкость материала провода; $m_{\rm np}$ - масса 1 м провода; $c_{\rm an}$, $c_{\rm cr}$ - удельная теплоемкость алюминия и стали соответственно; $m_{\rm an}$, $m_{\rm cr}$ - масса алюминия и стали в 1 м провода соответственно.

Удельная теплоемкость материала провода линейно зависит от температуры провода и определяется в рассматриваемом диапазоне температур формулой

$$c = c_0 \left(1 + \beta_c \vartheta_{\text{np}} \right),$$

где c_0 - удельная теплоемкость материала провода при 0 °C; β_c - температурный коэффициент теплоемкости, 1/°C.

Значения коэффициентов для различных материалов:

• алюминий -
$$c_0 = 886 \frac{\text{Дж}}{\text{кг} \cdot {}^{\circ} C}$$
; $\beta_c = 0,000534 \frac{1}{{}^{\circ} C}$;

• медь
$$-c_0 = 384 \frac{\text{Дж}}{\text{кг} \cdot {}^{\circ} C}; \quad \beta_c = 0,000271 \frac{1}{{}^{\circ} C};$$

• сталь -
$$c_0 = 437 \frac{\text{Дж}}{\text{кг} \cdot {}^{\circ} C}$$
; $\beta_c = 0.001076 \frac{1}{{}^{\circ} C}$.

Более точно допустимое время определяется в соответствии с приложением Ж. Максимальная погрешность при определении времени нагрева провода до допустимой температуры по упрощенной формуле возникает при токе, близком к аварийно допустимому. Поэтому расчеты по приложению Ж рекомендуется выполнять при токе равном $1,01 \div 1,20~I_{\rm aв~доп}$.

8 Выбор расчетных климатических условий

Климатические условия вдоль линии могут изменяться. Наиболее точно предельную токовую нагрузку можно определить по изложенной выше методике при известных климатических условиях вдоль линии:

- максимальная температура воздуха,
- минимальная скорость ветра,
- направление ветра (минимальный угол атаки ветра),
- величина солнечной радиации.

Температура воздуха. Изменение температуры воздуха вдоль ВЛ обычно незначительно для линий, не проходящих в горных условиях. Необходимо принимать максимальное значение температуры воздуха по

данным метеостанций или по замерам на подстанциях, между которыми проходит ВЛ или по показаниям датчиков температуры воздуха в районе ВЛ (при их наличии). При отсутствии данных максимальное значение температуры воздуха для теплого периода года можно принять равным абсолютной максимальной температуре воздуха согласно СП 131.13330. Для линий, проходящих в горной местности, обычно температура воздуха снижается при увеличении высоты, поэтому необходимо принимать температуру воздуха в низшей точке ВЛ.

Скорость ветра. Значение скорости ветра также принимается по данным замеров (при наличии датчиков скорости ветра) или по данным метеостанций. Необходимо учитывать, что в некоторых местах линия может быть прикрыта деревьями, строениями, складками местности. В этом случае, рекомендуется принимать скорость ветра с коэффициентом 0,5.

Скорость ветра также значительно изменяется по высоте. Обычно считается, что это изменение происходит по экспоненциальному закону. Стандартная высота измерения скорости ветра на метеостанциях - 10 м. Провода воздушных линий 220-500 кВ обычно расположены выше. В Таблице 8.1 приведены поправочные коэффициенты, учитывающие высоту расположения провода.

При отсутствии данных о скорости ветра необходимо знать, что в реальных условиях всегда есть некоторое движение воздуха. Даже при абсолютном штиле существует вертикальный поток воздуха от нагретой земли, что является вынужденной конвекцией для провода. Минимальная скорость ветра равна 0,6 м/с.

Таблица 8.1 Поправочные коэффициенты, учитывающие изменение скорости ветра с высотой

Тип местности		Высота	над по	верхно	стью зе	емли, м	
тип местности	10	15	20	30	40	50	60
Равнина, открытые склоны	1,00	1,07	1,12	1,18	1,22	1,26	1,30
Узкие горные долины,							
ущелья, город и лес	0,81	0,89	0,95	1,00	1,07	1,12	1,18
с препятствиями более 10 м							
Выпуклые участки рельефа							
(гребни хребтов,	1,00	1,05	1,07	1,07	1,07	1 10	1,12
водоразделы, перевалы,	1,00	1,03	1,07	1,07	1,07	1,10	1,12
выступающие плато)							

Направление ветра. Направление ветра значительно меняется по длине линии из-за изменения направления самой ВЛ; наличия складок местности, препятствий и заграждений; турбулентности. Для определения критического термального участка линии (участка линии, на котором допустимый ток является минимальным) рекомендуется направление ветра принимать вдоль ВЛ.

При проведении расчетов предельных токовых нагрузок ВЛ в условиях абсолютного штиля (скорость ветра $0.6\,\mathrm{m/c}$), направление ветра следует принимать перпендикулярным к проводу ($\Psi_{\mathrm{B}} = 90^{\mathrm{o}}$).

Солнечная радиация. При расчетах предельных токовых нагрузок необходимо учитывать следующие факторы: чистота воздуха, облачность, время суток, время года, широта местности, максимальная высота прокладки ВЛ над уровнем моря. При отсутствии этих данных в дневное время необходимо учитывать максимальный уровень солнечной радиации при чистом воздухе и отсутствии облачности, в вечернее и ночное время действие солнечной радиации не учитывается. Методика учета солнечной радиации приведена в Приложении Г.

9 Оформление результатов расчета

Результаты расчетов допустимых токовых нагрузок ЛЭП оформляются по форме, представленной в «Приложении И».

Информация направляется в филиал АО «СО ЕЭС» РДУ, диспетчерском управлении которого находится ЛЭП. Если ЛЭП находится в диспетчерском управлении вышестоящего ДЦ (филиала АО «СО ЕЭС» ОДУ главного диспетчерского центра АО «СО ЕЭС») информация направляется в филиал АО «СО ЕЭС» РДУ, в операционной зоне которого находится объект электроэнергетики, указанный первым в диспетчерском межгосударственных ЛЭП. Для ЛЭП, наименовании диспетчерском управлении зарубежного ДЦ, информация направляется в филиал AO «CO EЭС» РДУ, в операционной зоне которого находится объект электроэнергетики, к которому присоединена межгосударственная ЛЭП, расположенный на территории РФ.

Приложение А

Механические и электрические характеристики проволов

		X	арактер	истики п	роводов	<u> </u>	
	Расчет	ное сечение	мм ²	Расчет	гный		Электрическое
	T de le l		, 141141	диамет	р, мм	Macca	сопротивление
Марка			всего			провода,	провода
провода	Алюминия/ меди	стали	провода,	стального сердечника	провода	кг/км	постоянному току
	меди		MM ²	сердечника			при 20°C, Ом/км,
	Стапеа	пюминеві	ье провол	а марок АС	ACKC	АСКП АС	, , , , , , , , , , , , , , , , , , , ,
70/11	68,0	11,3	79,30	3,8	11,4	276	0,4218
70/11	68,4	72,2	140,6	11,0	15,4	755	0,4218
95/16	95,4	15,9	111,3	4,5	13,4	385	0,3007
95/10	91,2	141,0	232,2	15,4	19,8	1357	0,3146
120/19	118		· ·		,	471	0,2440
		18,8	136,8	5,6	15,2		,
120/27	116	26,6	142,6	6,6	15,5	528	0,2531
150/19	148	18,8	166,8	5,5	16,8	554	0,2046
150/24	149	24,2	173,2	6,3	17,1	599	0,2039
150/34	147	34,3	181,3	7,5	17,5	675	0,2061
185/24	187	24,2	211,2	6,3	18,9	705	0,1540
185/29	181	29,0	210,0	6,9	18,8	728	0,1591
185/43	185	43,1	228,1	8,4	19,6	846	0,1559
185/128	187	128,0	315,0	14,7	23,1	1525	0,1543
205/27	205	26,6	231,6	6,6	19,8	774	0,1407
240/32	244	31,7	275,7	7,2	21,6	921	0,1182
240/39	236	38,6	274,6	8,0	21,6	952	0,1222
240/56	241	56,3	297,3	9,6	22,4	1106	0,1197
300/39	301	38,6	339,6	8,0	24,0	1132	0,0958
300/48	295	47,8	342,8	8,9	24,1	1186	0,0978
300/66	288	65,8	353,8	10,5	24,5	1313	0,1000
300/67	289	67,3	356,3	10,5	24,5	1323	0,1000
300/204	298	204,0	502,0	18,6	29,2	2428	0,0968
330/30	335	29,1	364,1	6,9	24,8	1152	0,0861
330/43	332	43,1	375,1	8,4	25,2	1255	0,0869
400/18	381	18,8	399,8	5,6	26,0	1199	0,0758
400/22	394	22,0	416,0	6,0	26,6	1261	0,0733
400/51	394	51,1	445,1	9,2	27,5	1490	0,0733
400/64	390	63,5	453,5	10,2	27,7	1572	0,0741
400/93	406	93,5	499,2	12,5	29,1	1851	0,0741
450/56	434	56,3	490,3	9,6	28,8	1640	0,0666
500/26	502	26,6	528,6	6,6	30,0	1592	0,0575
500/20	481	26,6	507,6	6,6	29,4	1537	0,0600
500/27	490	63,5	553,5	10,2	30,6	1852	0,0588
500/04	490	204,0	700,0	18,6	34,5	2979	0,0580
	490					4005	
500/336		336,0	826,0	23,9	37,5		0,0588
550/71	549 580	71,2	620,2	10,8	32,4	2076	0,0526
600/72	580	72,2	652,2	11,0	33,2	2170	0,0498
650/79	634	78,9	712,9	11,5	34,7	2372	0,0460
700/86	687	85,9	772,9	12,0	36,2	2575	0,0420
750/93	748	93,2	841,2	12,5	37,7	2800	0,0386
800/105	821	105	926	13,3	39,7	3092	0,0352
1000/56	1003	56,3	1059,3	9,6	42,4	3210	0,0288

			Провода	марок А и .	АКП			
70	69,3	_	69,3	-	10,70	189,0	0,4	131
95	92,4	_	92,4	-	12,30	252,0		114
100	100,0	_	100,0	_	12,94	274,9		877
120	117,0	_	117,0	_	14,00	321,0	,	459
125	125,0	_	125,0	_	14,47	343,6		301
150	148,0	_	148,0	_	15,80	406,0		944
160	160,0	_	160,0	_	16,37	439,8		798
185	182,8	_	182,8	_	17,50	502,0		574
200	200,0	_	200,0	_	18,30	549,7		438
240	238,7	_	238,7	_	20,00	655,0		205
250	250,0	_	250,0	_	20,47	687,1		150
300	288,3	_	288,3	_	22,10	794,0		000
315	315,0	_	315,0	_	23,05	867,5		915
350	345,8	_	345,8	_	24,20	952,0		833
400	389,2		389,2	_	25,60	1072,0		740
450	449,1	_	449,1	_	27,30	1206,0		642
500	500,4	_	500,4	-	29,10	1378,0		576
550	544,0	_	544,0	<u>-</u> _	30,30	1500,0		570 529
560	560,0	_	560,0	-	30,73	1542,2		531
600	586,8	_	586,8	-	31,50	1618,0	,	491
630	630,0	_	630,0	_	32,64	1738,4		458
650	641,7	_	641,7	-	32,90	1771,0		450
700	691,7	_	691,7	-	34,20	1902,0		430 417
710	710,0	_	710,0	_	34,65	1902,0		406
750	747,4	_	747,4	_	35,60	2062,0		386
750	7 7 7 , 7		,	да марок N		2002,0	0,0	300
70	67,70	_	67,70	да марок т	10,7	612	0.2	723
95	94,00	_	94,00	_	12,6	850		944
120	117,00	_	117,00	_	14,0	1058		560
150	148,00	_	148,00	_	15,8	1338		238
185	183,00	_	183,00	_	17,6	1659		001
240	234,00	_	234,00	_	19,9	2124		789
300	288,00	_	288,00	_	22,1	2614		637
350	346,00	_	346,00	_	24,2	3071		530
400	389,00	_	389,00	_	25,5	3528		471
	202,00	<u>Провол</u>		иевые полн		l .	0,0	., .
500	494		494	-	45	70240	0.0	573
640	655	_	655	_	59	93100	-	432
0.10		ша сталеалк		сплава маро			·	
				-r-	,	,	AH,	АЖ,
							АНКП	АЖКП
120	117,0	-	117,0	-	14,0	321	0,2609	0,2826
150	148,0	-	148,0	-	15,8	406	0,2059	0,2231
185	182,3	-	182,3	-	17,5	502	0,1669	0,1808
	T			иниевый м		T		
500	500	0	500	0	29,1	1378	·)58
	ровод компа							
AERO-Z	433,5	213,4	646,9	16,5	31	2936	0,0	771
AACSR Z								
647 A3F								

Приложение Б

Физико-механические характеристики проводов

Провода и тросы Сталеалюминиевые с отношением площадей поперечных сечений А/С (Приложение A)	Модуль упругости, E , 10^4H/mm^2	Температурный коэффициент линейного удлинения, α, 10 ⁻⁶ град ⁻¹	Предел прочности при растяжении провода в целом, Н/мм ²
20,27	7,04	21,5	210
16,87-17,82	7,04	21,2	220
11,51	7,45	21,0	240
8,04-7,67	7,70	19,8	270
6,28-5,99	8,25	19,2	290
4,36-4,28	8,90	18,3	340
2,43	10,3	16,8	460
1,46	11,4	15,5	565
0,95	13,4	14,5	690
0,65	13,4	14,5	780
Из			
нетермообработанного	6,3	23,0	285
алюминиевого сплава			
Из термообработанного алюминиевого сплава	6,3	23,0	285
Из термообработанного			
алюминиевого сплава со			
стальным сердечником с			
отношением площадей			
поперечных сечений А/С:	11 65	15,83	620
1,/1	11,65 12,0	15,83	650
1,40	12,0	13,3	030

Расчет теплоотдачи с поверхности провода

Процесс переноса теплоты между проводом и воздухом является результатом совокупного действия конвективного теплообмена и теплового излучения; это, так называемый, сложный теплообмен. Здесь, в качестве основного явления, обычно принимается конвекция. Интенсивность теплообмена провода с воздухом определяется по формуле Ньютона-Рихмана:

$$P_{\rm B} = \alpha F \left(\vartheta_{\rm M} - \vartheta_{\rm B} \right),$$

где α - коэффициент теплоотдачи, $Bt/(M^2 \cdot {}^{\circ}C)$; ${}^{\circ}C$; F - площадь поверхности теплообмена, M^2 ; θ_B - температура воздуха.

Площадь поверхности теплообмена рассчитывается исходя из предположения о цилиндрической форме провода. Для 1м провода $F = \pi d_{\rm пр \, 9}$, здесь $d_{\rm пр \, 9}$ - эквивалентный диаметр провода, учитывающий увеличение поверхности теплообмена за счет витой структуры провода. Более точно эквивалентный диаметр провода определяется по формуле:

$$d_{\text{пр 3}} = n_{\text{пров}} d_{\text{пров}} \left(1 - \frac{2 \arcsin \sqrt{1 - 0.25 \left(\frac{d_{\text{пров}}}{d_{\text{пр}} - d_{\text{пров}}} \right)^2}}{360} \right),$$

где $n_{\rm пров}$ - число проволок в наружном повиве провода; $d_{\rm пров}$ - диаметр проволоки, м. При отсутствии справочных данных $n_{\rm пров}$ определяется по формуле:

$$n_{\text{пров}} = \left(\frac{d_{\text{пр}}}{d_{\text{пров}}} - 1\right) \pi,$$

округляя полученное значение до ближайшего меньшего целого числа.

Приближенно можно считать $d_{\text{пр } 3} = 1.33 d_{\text{пр}}$.

Коэффициент теплоотдачи является основной количественной характеристикой процесса теплопередачи:

$$\alpha = \alpha_{K} + \alpha_{JI}$$
,

где α_{κ} - учитывает действие конвекции, а α_{π} - действие теплового излучения.

Теплоотдача конвекцией представляет собой сложный процесс передачи тепла за счет движения воздуха. Различают свободную конвекцию, когда движение воздуха возникает за счет разности температур нагретого тела и окружающей среды, и вынужденную, когда движение воздуха определяется причинами, не связанными с охлаждаемым телом (ветер, поток воздуха от вентилятора). В реальных условиях два этих вида конвекции существуют совместно и накладываются друг на друга. Особенно сильно их взаимное влияние сказывается в диапазоне скоростей ветра от 0,5 до 2 м/с.

При свободной конвекции обычно преобладает вертикальное движение воздуха в районе нагретого тела. При вынужденной конвекции преобладает горизонтальное движение воздуха, то есть, ветер. Только при абсолютном штиле направление движении воздуха при свободной и вынужденной конвекции совпадают, так как вынужденная конвекция в этом случае определяется воздухом, поднимающемся от нагретой земли вверх, к проводу.

Коэффициент теплоотдачи конвекцией, согласно теории подобия, в общем виде определяется исходя из критериальных уравнений конвективного теплообмена:

$$Nu=F(Re, Gr),$$

где Nu - критерий Нуссельта, определяющий коэффициент теплоотдачи; Re - критерий Рейнольдса, характеризующий вынужденную конвекцию; Gr - критерий Грасгофа, характеризующий свободную конвекцию. Обычно функция F представляется в виде степенной зависимости от критериев подобия.

Критерий Нуссельта - безразмерная величина равная

$$Nu = \frac{\alpha_{\rm K} d_{\rm np}}{\lambda_{\rm B}},$$

где $\lambda_{\rm B}$ - коэффициент теплопроводности воздуха, ${\rm BT/(M\cdot {}^{\circ}{\rm C})}$.

Критерий Рейнольдса рассчитывается по формуле:

$$Re = \frac{vd_{\Pi p}}{v_{B}},$$

где v - скорость ветра, м/c; $v_{\rm B}$ - кинематический коэффициент вязкости воздуха, м²/c.

Критерий Грасгофа равен:

$$Gr = \frac{g\beta_{\rm B}d_{\rm np}^3\left(\vartheta_{\rm np} - \vartheta_{\rm B}\right)}{v_{\rm B}^2},$$

где g - ускорение свободного падения, 9,81 м/с²; $\beta_{\text{в}}$ - температурный коэффициент объемного расширения воздуха, 1/°С, который приближенно можно рассчитать по формуле $\beta_{\text{в}} \approx 1/(9_{\text{в}} + 273)$.

Значения параметров воздуха в реальном диапазоне температур с достаточной точностью могут быть представлены в виде аналитических зависимостей:

$$\lambda_{B} = 2,44 \cdot 10^{-2} \sqrt{1 + 0,0069 \cdot \vartheta_{B}} ;$$

$$\nu_{B} = 13,28 \cdot 10^{-6} (1 + 0,0069 \cdot \vartheta_{B}).$$

Функция (4) обычно представляется в виде степенной зависимости. Критерий Нуссельта определяется соотношением:

• при свободной конвекции

$$Nu = 0.46Gr^{0.25}$$
;

• при вынужденной конвекции (без учета естественной)

$$Nu = \left\{ egin{array}{ll} 0,437Re^{0,5}, & \text{при } 5 < Re \leq 10^3 \\ 0,218Re^{0,6}, & \text{при } 10^3 < Re \leq 2 \cdot 10^5 \\ 0,0201Re^{0,8}, \text{при } 2 \cdot 10^5 < Re \leq 2 \cdot 10^6. \end{array}
ight.$$

Для учёта совместного действия свободной и вынужденной конвекции, необходимо использовать эквивалентный критерий Рейнольдса Re_9

$$Nu = egin{cases} 0,437k_{\psi}Re^{0,5}, & \text{при } 5 < Re \leq 10^3 \ 0,218k_{\psi}Re^{0,6}, & \text{при } 10^3 < Re \leq 2 \cdot 10^5 \ 0,0201k_{\psi}Re^{0,8}, \text{при } 2 \cdot 10^5 < Re \leq 2 \cdot 10^6, \end{cases}$$

где k_{ψ} - коэффициент зависимости теплоотдачи при конвективном теплообмене от угла атаки ветра $\psi_{\rm B}$, определяется по Таблице П.1; Re_3 - эквивалентный критерий Рейнольдса, учитывающий совместное действие свободной и вынужденной конвекции, равный:

$$Re_3 = Re + \sqrt{0.5Gr}$$
,

если направления свободного и вынужденного потоков воздуха совпадают;

$$Re_9 = \sqrt{Re^2 + 0.5Gr} ,$$

если вынужденный поток направлен горизонтально (ветер).

Таблица П.1. Зависимость коэффициента теплоотдачи конвекцией от направления ветра

ψ _B , °	>80	70	60	50	40	30	<20
k_{ψ}	1	0.98	0.94	0.88	0.78	0.67	0.55

Коэффициент теплоотдачи излучением определяется по формуле:

$$\alpha_{_{\rm JI}} = \frac{5,67\epsilon_{_{\rm II}}}{\vartheta_{_{\rm IIp}} - \vartheta_{_{\rm B}}} \left[\left(\frac{273 + \vartheta_{_{\rm IIp}}}{100} \right)^4 - \left(\frac{273 + \vartheta_{_{\rm B}}}{100} \right)^4 \right],$$

где $\varepsilon_{\rm u}$ - постоянная излучения (степень черноты провода).

На основании опыта эксплуатации рекомендуется принимать $\varepsilon_{\rm u}$ равной 0,3 нового провода (первые два года эксплуатации) и 0,6 для последующих лет.

Учет солнечной радиации при расчете допустимого тока

Величина дополнительного нагрева провода от солнечной радиации зависит от интенсивности солнечного излучения, конструкции, геометрических размеров, состояния поверхности и материала провода. Интенсивность солнечного излучения в свою очередь зависит от времени года, времени суток, широты местности, состояния атмосферы, облачности.

Мощность солнечного излучения, поглощаемая 1 м провода определяется уравнением

$$P_{\rm c} = \varepsilon_{\rm m} k_H d_{\rm mp} k_{\rm mec} W_{\rm p} \sin \psi_{\rm c}$$

где $\varepsilon_{\rm n}$ - коэффициент поглощения провода (принимается равным 0,6); k_H - коэффициент, учитывающий влияние высоты над уровнем моря; $k_{\rm mec}$ - коэффициент, учитывающий зависимость интенсивности солнечного излучения от времени года (месяца) ; $W_{\rm p}$ - интенсивность суммарной радиации (прямой и отраженной), ${\rm BT/m}^2$; $\psi_{\rm c}$ - активный угол наклона солнечных лучей,°, определяемый выражением

$$\psi_{\rm c} = arccos(cos\ h_{\rm c}\ cos(180\ -\ \psi_{\rm I})),$$

здесь $h_{\rm c}=113,5$ - ϕ - угловая высота Солнца для северного полушария Земли, причем широта местности $\phi \geq 23,5; \ \psi_{\scriptscriptstyle \Pi}$ - ориентация линии электропередачи по отношению к меридиану.

Если высота прокладки трассы ВЛ над уровнем моря находится в диапазоне 150-1000 м, то

$$k_H = 0.116 \, lgH + 0.752,$$

если H<150 м, то k_H =1.

Зависимость $W_{\rm p}$ от высоты Солнца $h_{\rm c}$ можно представить в виде аналитических зависимостей с учетом чистоты воздуха [6]:

• для чистого воздуха (формула используется для расчёта при учёте погодных условий: ясно):

$$W_{\rm p} = 250,874 + 27,637 h_{\rm c} - 0,3394 h_{\rm c}^2 + 1,4435 \cdot 10^{-3} h_{\rm c}^3$$
;

• для воздуха средней загрязненности (формула используется при учёте погодных условий: облачно)

$$W_{\rm p} = 134,282 + 26,738h_{\rm c} - 0,3134h_{\rm c}^2 + 1,2893 \cdot 10^{-3}h_{\rm c}^3;$$

• для загрязненного воздуха (формула используется при учёте погодных условий: пасмурно)

$$W_{\rm p} = -21,092 + 27.492 h_{\rm c} - 0,318 h_{\rm c}^2 + 1,357 \cdot 10^{-3} h_{\rm c}^3.$$

Для замеров в вечернее время расчёт допустимого тока следует проводить без учёта солнечной радиации.

Зависимость интенсивности солнечного излучения от времени года рассчитывается исходя из данных СП 131.13330 [4]. Коэффициент $k_{\rm mec}$ определяется по Таблице П.2.

Таблица П.2. Коэффициент зависимости интенсивности солнечного излучения от времени года

Месяц	1	2	3	4	5	6	7	8	9	10	11	12
$k_{ m mec}$	0,68	0,71	0,88	0,89	0,99	1	1	0,9	0,81	0,77	0,69	0,65

Расчет температуры провода

Расчет температуры провода при заданных климатических условиях выполняется по уравнению:

$$k_{\rm M}k_{\rm II}I^2R_{20}\left(1+\beta_r\left(\vartheta_{\rm IIp}-20\right)\right)+P_c=\left(\alpha_{\rm K}+\alpha_{\rm JI}\right)F\left(\vartheta_{\rm IIp}-\vartheta_{\rm B}\right).$$

Уравнение является нелинейным. Его решение можно найти численными методами, в частности, итерационным методом. Формула для расчета установившейся температуры провода на k-й итерации выглядит следующим образом:

$$\vartheta_{\text{пр}}^{(k)} = \frac{k_{\text{M}}k_{\text{\Pi}}I^{2}R_{20}(1-20\beta_{r}) + P_{c} + F\vartheta_{\text{B}}\left(\alpha_{\text{K}}^{(k-1)} + \alpha_{\text{II}}^{(k-1)}\right)}{\left(\alpha_{\text{K}}^{(k-1)} + \alpha_{\text{II}}^{(k-1)}\right)F - k_{\text{M}}k_{\text{II}}I^{2}R_{20}\beta_{r}},$$

где $\alpha_{\rm K}^{(k-1)}$, $\alpha_{\rm J}^{(k-1)}$ - значения коэффициентов теплоотдачи, рассчитанные по формулам приложения Γ исходя из значения температуры провода на предыдущей, (k-1), итерации $\vartheta_{\rm IID}^{(k-1)}$.

Расчеты выполняются пока $\left| \vartheta_{\rm np}^{(k)} - \vartheta_{\rm np}^{(k-1)} \right| \le \epsilon$, где ϵ - заданная точность расчета.

В качестве начального значения температуры $\vartheta_{\rm np}^{(0)}$ можно принять значение максимально допустимой температуры провода, при этом обеспечивается достаточно высокая сходимость итерационного процесса, 3-4 итерации при точности расчета температуры провода 0,1 °C.

Точный расчет допустимой температуры провода по условию сохранения допустимых габаритов ВЛ

Метод расчета провода основан на теории провисания гибкой однородной тяжелой нити [7-9]. При этом кривая провисания принимает форму цепной нити. Уравнение этой кривой при этом записывается в следующем виде

$$y = y_0 ch \left(\frac{x}{y_0}\right),$$

где x - координата по горизонтальной оси (см.рис.1); $y_0 = \sigma_0/\gamma_1$, здесь σ_0 -механическое напряжение в проводе в низшей точке провиса, $H/\text{мм}^2$.

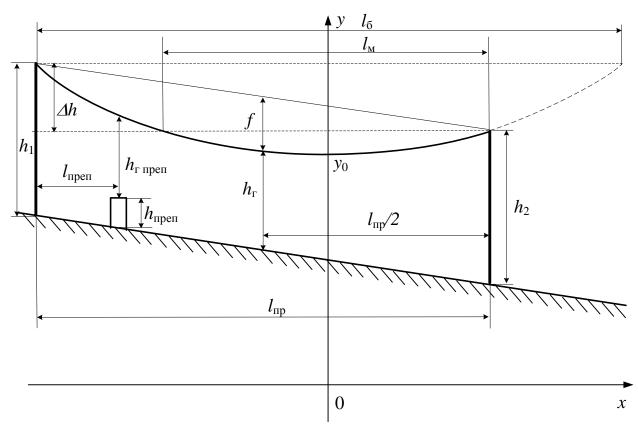


Рис.1 Пролет ВЛ

Сначала, по измеренному габариту до земли в середине пролета, определяется расчетное значение напряжения в низшей точке провеса провода, σ_{0n} , путем численного решения системы нелинейных уравнений:

$$\begin{cases}
\frac{\sigma_{0p}}{\gamma_{1}} \left(ch \left(\frac{\gamma_{1} \left(l_{\text{M p}} - l_{\text{np}} \right)}{4\sigma_{0p}} \right) - \frac{l_{\text{np}}}{l_{\text{6 p}} + l_{\text{M p}}} \left(ch \left(\frac{\gamma_{1} l_{\text{6 p}}}{2\sigma_{0p}} \right) - ch \left(\frac{\gamma_{1} l_{\text{M p}}}{2\sigma_{0p}} \right) + \frac{\gamma_{1} \left(h_{2} - h_{1} \right)}{\sigma_{0p}} \right) - ch \left(\frac{\gamma_{1} l_{\text{M p}}}{2\sigma_{0p}} \right) + h_{2} = h_{3 \text{ M3M}}; \\
\frac{\sigma_{0p}}{\gamma_{1}} \left(ch \left(\frac{\gamma_{1} l_{\text{6 p}}}{2\sigma_{0p}} \right) - ch \left(\frac{\gamma_{1} \left(2l_{\text{np}} - l_{\text{6 p}} \right)}{2\sigma_{0p}} \right) \right) = \Delta h; \\
\left(l_{\text{6 p}} + l_{\text{M p}} \right) / 2 = l_{\text{np}},
\end{cases} (E.1)$$

где $l_{\rm 6~p},\ l_{\rm M~p}$ - расчетные длины большого и малого эквивалентных пролетов, м (см. рис.1); Δh - разность высот подвеса провода, м; $h_{\rm 1},\ h_{\rm 2}$ - высоты от основания опор до точки крепления провода, м.

При наличии двух замеров габаритов пролета ВЛ в точках, отстоящих от первой опоры на расстоянии l_1 и l_2 , расчетное значение σ_{0p} определяется из следующей системы уравнений, решаемой численными методами

$$\begin{cases} h_{\Gamma}(l_{1}) = \frac{\sigma_{0p}}{\gamma_{i}} \operatorname{ch}\left(\frac{\gamma_{i}(2l_{1} - l_{6})}{4\sigma_{0p}}\right) - \frac{\sigma_{0p}}{\gamma_{i}} \frac{l_{M} - 2l_{1} - l_{6}}{l_{6} + l_{M}} \left(\operatorname{ch}\left(\frac{\gamma_{i}l_{6}}{2\sigma_{0p}}\right) - \operatorname{ch}\left(\frac{\gamma_{i}l_{M}}{2\sigma_{0p}}\right) + \frac{\gamma_{i}(h_{2} - h_{1})}{\sigma_{0p}}\right) \\ - \frac{\sigma_{0p}}{\gamma_{i}} \operatorname{ch}\left(\frac{\gamma_{i}l_{M}}{2\sigma_{0p}}\right) + \frac{\gamma_{i}h_{2}}{\sigma_{0p}}; \\ h_{\Gamma}(l_{2}) = \frac{\sigma_{0p}}{\gamma_{i}} \operatorname{ch}\left(\frac{\gamma_{i}(2l_{2} - l_{6})}{4\sigma_{0p}}\right) - \frac{\sigma_{0p}}{\gamma_{i}} \frac{l_{M} - 2l_{2} - l_{6}}{l_{6} + l_{M}} \left(\operatorname{ch}\left(\frac{\gamma_{i}l_{6}}{2\sigma_{0p}}\right) - \operatorname{ch}\left(\frac{\gamma_{i}l_{M}}{2\sigma_{0p}}\right) + \frac{\gamma_{i}(h_{2} - h_{1})}{\sigma_{0p}}\right) - \frac{\sigma_{0p}}{\gamma_{i}} \frac{l_{M} - 2l_{2} - l_{6}}{l_{6} + l_{M}} \left(\operatorname{ch}\left(\frac{\gamma_{i}l_{6}}{2\sigma_{0p}}\right) - \operatorname{ch}\left(\frac{\gamma_{i}l_{M}}{2\sigma_{0p}}\right) + \frac{\gamma_{i}(h_{2} - h_{1})}{\sigma_{0p}}\right) - \frac{\sigma_{0p}}{\gamma_{i}} \operatorname{ch}\left(\frac{\gamma_{i}l_{M}}{2\sigma_{0p}}\right) + \frac{\gamma_{i}h_{2}}{\sigma_{0p}}. \end{cases}$$

Расчет ведется методом Ньютона по итерационным формулам

$$l_{\delta(k)} = l_{\delta(k-1)} + \Delta l_{(k)}; \ \sigma_{0(k)} = \sigma_{0(k-1)} + \Delta \sigma_{(k)}$$

до тех пор пока $\left(\left(\Delta l_{(k)}\right)^2 + \left(\Delta\sigma_{(k)}\right)^2\right) \ge \epsilon$, здесь ϵ - требуемая точность расчета.

Значения $\Delta l_{(k)}$ и $\Delta \sigma_{(k)}$ на k-ой итерации определяются из системы уравнений

$$-\begin{bmatrix} \frac{\partial F_1}{\partial l_6} \Big|_{l_{\delta(k-1)}} & \frac{\partial F_1}{\partial \sigma_0} \Big|_{\sigma_{0(k-1)}} \\ \frac{\partial F_2}{\partial l_6} \Big|_{l_{\delta(k-1)}} & \frac{\partial F_2}{\partial \sigma_0} \Big|_{\sigma_{0(k-1)}} \end{bmatrix} \begin{bmatrix} \Delta l_{(k)} \\ \Delta \sigma_{(k)} \end{bmatrix} = \begin{bmatrix} F_1 \Big(\sigma_{0(k-1)}, l_{\delta(k-1)} \Big) \\ F_2 \Big(\sigma_{0(k-1)}, l_{\delta(k-1)} \Big) \end{bmatrix},$$

где

$$\begin{split} F_1 &= sh \bigg(\frac{\gamma_1 l_6}{2\sigma_0} \bigg) + sh \bigg(\frac{\gamma_1 \Big(2 l_{\rm np} - l_6 \Big)}{2\sigma_0} \bigg) - \frac{C\gamma_1}{\sigma_0} \Big(1 + \beta_{\rm J} \Big(\vartheta_{\rm np} - \vartheta_{\rm np \, p} \Big) \Big) \bigg(1 + \frac{1}{E} \Big(\sigma_0 - \sigma_{0p} \Big) \bigg); \\ F_2 &= ch \bigg(\frac{\gamma_1 l_6}{2\sigma_0} \bigg) - ch \bigg(\frac{\gamma_1 \Big(2 l_{\rm np} - l_6 \Big)}{2\sigma_0} \bigg) - \frac{\Delta h \gamma_1}{\sigma_0}, \\ 3 \text{десь} \quad C &= \frac{\sigma_{0p}}{\gamma_{ip}} \bigg(sh \bigg(\frac{\gamma_{ip} l_{6p}}{2\sigma_{0p}} \bigg) + sh \bigg(\frac{\gamma_{ip} \Big(2 l_{\rm np} - l_{6p} \Big)}{2\sigma_{0p}} \bigg) \bigg) \quad \text{- величина, не зависящая} \end{split}$$

ot σ_0 .

Решая систему уравнений, получим

$$\begin{split} & F_2\left(\sigma_{0(k-1)}, l_{\delta(k-1)}\right) - F_1\left(\sigma_{0(k-1)}, l_{\delta(k-1)}\right) \frac{\frac{\partial F_2}{\partial l_{\delta}}}{\left.\frac{\partial F_1}{\partial l_{\delta}}\right|_{l_{\delta(k-1)}}} \\ & \Delta\sigma_{(k)} = \frac{\frac{\partial F_2}{\partial l_{\delta}}\bigg|_{l_{\delta(k-1)}}}{\left.\frac{\partial F_1}{\partial l_{\delta}}\bigg|_{l_{\delta(k-1)}}} \frac{\partial F_1}{\partial \sigma_0}\bigg|_{\sigma_{0(k-1)}} - \frac{\partial F_2}{\partial \sigma_0}\bigg|_{\sigma_{0(k-1)}} \\ & \Delta I_{(k)} = \frac{\Delta\sigma_{(k)} \left.\frac{\partial F_1}{\partial \sigma_0}\bigg|_{\sigma_{0(k-1)}} - F_1\left(\sigma_{0(k-1)}, l_{\delta(k-1)}\right)}{\left.\frac{\partial F_1}{\partial l_{\delta}}\bigg|_{l_{\delta(k-1)}}} \,. \end{split}$$

Значения частных производных определяются по формулам:

$$\frac{\partial F_{1}}{\partial l_{\delta}} = \frac{\gamma_{1}}{2\sigma_{0}} \left(ch \left(\frac{\gamma_{1} l_{\delta}}{2\sigma_{0}} \right) - ch \left(\frac{\gamma_{1} \left(2l_{\text{np}} - l_{\delta} \right)}{2\sigma_{0}} \right) \right);$$

$$\begin{split} \frac{\partial F_1}{\partial \sigma_0} &= -\frac{\gamma_1 l_6}{2\sigma_0^2} ch\left(\frac{\gamma_1 l_6}{2\sigma_0}\right) - \frac{\gamma_1 \left(2 l_{\rm np} - l_6\right)}{2\sigma_0^2} ch\left(\frac{\gamma_1 \left(2 l_{\rm np} - l_6\right)}{2\sigma_0}\right) + \\ &+ \left(1 + \beta_{\rm II} \left(9_{\rm np} - 9_{\rm np\,p}\right)\right) \frac{C\gamma_1 \left(1 - \frac{\sigma_{0\rm p}}{E}\right)}{\sigma_0^2}; \\ \frac{\partial F_2}{\partial l_6} &= \frac{\gamma_1}{2\sigma_0} \left(sh\left(\frac{\gamma_1 l_6}{2\sigma_0}\right) - sh\left(\frac{\gamma_1 \left(2 l_{\rm np} - l_6\right)}{2\sigma_0}\right)\right); \\ \frac{\partial F_2}{\partial \sigma_0} &= -\frac{\gamma_1 l_6}{2\sigma_0^2} sh\left(\frac{\gamma_1 l_6}{2\sigma_0}\right) + \frac{\gamma_1 \left(2 l_{\rm np} - l_6\right)}{2\sigma_0^2} sh\left(\frac{\gamma_1 \left(2 l_{\rm np} - l_6\right)}{2\sigma_0}\right) + \frac{\Delta h\gamma_1}{\sigma_0^2}. \end{split}$$

Далее определяются значения габаритов до земли, h_3 , в середине пролета и до препятствия или пересечения, $h_{\Gamma \text{ преп}}$, по формулам:

$$\begin{split} h_{3} &= \frac{\sigma_{0}}{\gamma_{1}} \Bigg(ch \Bigg(\frac{\gamma_{1} \Big(l_{\mathrm{M}} - l_{\mathrm{\Pi}\mathrm{p}} \Big)}{4\sigma_{0}} \Bigg) - \frac{l_{\mathrm{\Pi}\mathrm{p}}}{l_{6} + l_{\mathrm{M}}} \Bigg(ch \Bigg(\frac{\gamma_{1} l_{6}}{2\sigma_{0}} \Bigg) - ch \Bigg(\frac{\gamma_{1} l_{\mathrm{M}}}{2\sigma_{0}} \Bigg) + \frac{\gamma_{1} \Big(h_{2} - h_{1} \Big)}{\sigma_{0}} \Bigg) - \\ &- ch \Bigg(\frac{\gamma_{1} l_{\mathrm{M}}}{2\sigma_{0}} \Bigg) \Bigg) + h_{2}; \\ h_{\mathrm{T} \ \mathrm{\Pi}\mathrm{pe}\mathrm{\Pi}} &= \frac{\sigma_{0}}{\gamma_{1}} \Bigg(ch \Bigg(\frac{\gamma_{1} \Big(l_{\mathrm{\Pi}\mathrm{pe}\mathrm{\Pi}} - l_{6} \Big)}{4\sigma_{0}} \Bigg) - \frac{l_{6} + l_{\mathrm{M}} - 2l_{\mathrm{\Pi}\mathrm{pe}\mathrm{\Pi}}}{l_{6} + l_{\mathrm{M}}} \Bigg(ch \Bigg(\frac{\gamma_{1} l_{6}}{2\sigma_{0}} \Bigg) - ch \Bigg(\frac{\gamma_{1} l_{\mathrm{M}}}{2\sigma_{0}} \Bigg) + \\ &+ \frac{\gamma_{1} \Big(h_{2} - h_{1} \Big)}{\sigma_{0}} \Bigg) - ch \Bigg(\frac{\gamma_{1} l_{\mathrm{M}}}{2\sigma_{0}} \Bigg) \Bigg) + h_{2} - h_{\mathrm{\Pi}\mathrm{pe}\mathrm{\Pi}}. \end{split}$$

Если $h_3 < h_{3 \text{ доп}}$ и $h_{\Gamma \text{ преп}} < h_{\text{преп доп}}$, то температура провода увеличивается на значение $\Delta 9_{\text{пр}}$ и расчеты повторяются. Расчет выполняется до тех пор, пока габарит до земли или до препятствия достигнет допустимого значения. Таким образом, определяется допустимая температура провода.

Точный расчет допустимого времени нагрева провода

Более точно время ликвидации аварийного режима можно определить интегрированием дифференциального уравнения теплового баланса, так как теплоемкость провода и коэффициент теплоотдачи от температуры провода, и реальная кривая нагрева провода несколько отличается от экспоненты:

$$C\frac{d\vartheta_{\text{пр}}}{dt} = k_{\text{M}}k_{\text{\Pi}}I_{\text{aB}}^{2}R_{20}\left(1 + \beta_{r}\left(\vartheta_{\text{пр}} - 20\right)\right) + P_{c} - \left(\alpha_{\text{K}} + \alpha_{\text{J}}\right)F\left(\vartheta_{\text{пр}} - \vartheta_{\text{B}}\right).$$

Для определения кривой нагрева провода необходимо применить численные методы решения этого уравнения, например, методом Эйлера. Переходя от дифференцирования к конечным приращениям величин температуры провода и времени на *k*-м шаге интегрирования получим:

$$\Delta \vartheta_{\text{пр}}^{(k)} = \frac{\Delta t}{C^{(k-1)}} \left(k_{\text{M}} k_{\text{\Pi}} \left(I_{\text{aB}}^{(k-1)} \right)^{2} R_{20} \left(1 + \beta_{r} \left(\vartheta_{\text{пр}}^{(k-1)} - 20 \right) \right) + P_{c} - \left(\alpha_{\text{K}}^{(k-1)} + \alpha_{\text{II}}^{(k-1)} \right) F \left(\vartheta_{\text{пр}}^{(k-1)} - \vartheta_{\text{B}} \right) \right);$$

$$\vartheta_{\text{пр}}^{(k)} = \vartheta_{\text{пр}}^{(k-1)} + \Delta \vartheta_{\text{пр}}^{(k)}.$$

Интегрирование производится от начальной температуры (температура провода в предшествующем режиме) до аварийно допустимой температуры провода.

Основываясь на положениях данного пункта, можно определить минимальные значения времени достижения аварийно допустимой температуры в зависимости от величины тока (в % от аварийно допустимого тока при заданных климатических условиях). При этом, в качестве начальной температуры провода до перегруза следует принимать наихудший режим, когда температура провода равна 70 °C.

Максимальные значения длительно и аварийно допустимых токов

В настоящем приложении приведены максимальные значения длительно и аварийно допустимых токов для различных типов проводов согласно ГОСТ 839 и географических широт при наихудших (с точки зрения пропускной способности) климатических условиях.

Таблицы применяются на стадии проектирования линий электропередач для корректного учета их пропускной способности.

Значения допустимых токов для промежуточных значений температуры воздуха могут определяться линейной интерполяцией.

					To	емперат	гура ок	ружаюі	цего во	здуха, і	рад. С				
Марка провода	Географическая широта, ° с. ш.	-20 и ниже	-15	-10	-5	0	5	10	15	20	25	30	35	40	45
_				Длител	ьно дог	тустимі	ый ток	ВЛ, А/	Аварий	іно доп	устимы	ій ток Е	ВЛ, А		
	40-50	444	430	416	402	387	371	355	338	320	301	281	259	236	210
	40-30	485	473	461	449	436	423	409	395	380	365	349	333	315	297
AC-70/11	50-60	444	431	417	402	387	371	355	338	320	302	281	260	236	210
AC-70/11	30-00	486	474	461	449	436	423	409	395	381	365	350	333	316	297
	60-80	445	431	417	402	387	372	356	339	321	302	282	261	237	211
	00-80	486	474	462	449	436	423	410	396	381	366	350	334	316	298
	40-50	554	536	519	501	482	462	442	421	398	375	349	322	292	259
	40-30	606	591	576	560	544	527	510	493	474	455	436	415	393	370
AC-95/16	50-60	554	537	519	501	482	463	442	421	399	375	350	323	293	260
AC-93/10	30-00	606	591	576	560	544	528	511	493	475	456	436	415	393	370
	60-80	554	537	520	502	483	463	443	422	399	376	351	324	294	261
	00-80	607	592	576	561	545	528	511	493	475	456	437	416	394	371
	40-50	647	626	596	575	554	531	508	483	457	430	401	369	335	297
	40-30	710	691	662	644	626	607	587	567	546	524	501	477	452	425
AC-120/19	50-60	648	626	597	576	554	532	508	483	458	430	401	370	335	297
AC-120/19	30-00	710	691	663	645	626	607	587	567	546	524	501	477	452	425
	60-80	648	627	597	577	555	532	509	484	459	431	402	371	337	299
	00-80	711	692	663	645	627	608	588	568	547	525	502	478	453	426
	40-50	645	624	594	573	551	529	506	481	455	428	399	368	333	295
	40-30	708	689	660	642	623	604	585	564	543	522	499	475	450	423
AC-120/27	50-60	646	624	594	573	552	529	506	482	456	429	399	368	334	296
110-120/21	30-00	708	689	660	642	624	605	585	565	544	522	499	475	450	424
	60-80	646	625	595	574	553	530	507	482	457	430	401	369	335	297
	00-00	709	690	661	643	624	605	586	565	544	523	500	476	451	425
AC-150/19	40-50	751	726	700	674	647	612	585	557	527	495	461	425	385	340
AC-130/19	40-30	824	802	779	756	733	700	678	654	630	604	578	550	521	490

					To	емперат	гура ок	ружаюі	цего во	здуха, і	град. С				
Марка провода	Географическая широта, ° с. ш.	-20 и ниже	-15	-10	-5	0	5	10	15	20	25	30	35	40	45
				Длител	ьно дог	тустим і	ый ток	ВЛ, А/	Аварий	но доп	устимы	й ток В	ВЛ, А		
	50-60	751	726	701	675	648	613	586	557	527	496	462	425	386	341
	30-00	824	802	780	757	733	701	678	654	630	605	578	551	521	490
	60-80	752	727	702	675	649	614	587	558	528	497	463	427	387	343
	00-00	825	803	780	757	734	702	679	655	631	606	579	552	522	492
	40-50	758	733	707	681	653	625	590	561	531	499	464	427	387	342
	40-30	832	810	787	764	740	716	683	659	635	609	582	554	525	493
AC-150/34	50-60	759	733	708	681	654	626	590	561	531	499	465	428	388	343
AC-130/34	30-00	833	810	787	764	741	717	683	660	635	609	583	555	525	494
	60-80	759	734	708	682	655	627	591	562	532	500	466	430	390	345
	00-80	833	811	788	765	741	717	684	660	636	610	584	556	526	495
	40-50	867	838	808	778	747	715	681	647	604	567	528	486	440	388
	40-30	952	926	900	874	847	819	791	762	723	694	663	631	597	562
AC-185/29	50-60	867	838	809	778	747	715	682	647	604	568	529	487	441	390
AC-103/29	30-00	953	927	901	874	847	820	791	762	723	694	664	632	598	562
	60-80	868	839	810	780	748	716	683	649	606	569	530	488	443	392
	00-80	953	928	902	875	848	820	792	763	725	695	665	633	599	564
	40-50	891	861	831	800	768	734	700	665	627	588	541	498	451	398
	40-30	979	953	926	898	871	842	813	783	752	721	680	647	613	576
AC-185/43	50-60	892	862	831	800	768	735	701	665	628	589	542	499	452	399
AC-105/45	30-00	980	953	926	899	871	843	814	784	753	721	681	648	614	577
	60-80	893	863	832	801	769	736	702	667	629	590	544	501	453	401
	00-80	980	954	927	900	872	844	815	785	754	722	682	649	615	578
	40-50	1055	1020	984	947	908	869	828	786	742	695	646	592	534	466
	40-30	1160	1129	1097	1064	1031	998	963	927	891	853	814	773	730	678
AC-240/32	50-60	1056	1020	984	947	909	870	829	787	743	696	647	593	536	467
AC-240/32	50-00	1161	1129	1097	1065	1032	998	964	928	892	854	815	774	731	679
	60-80	1057	1022	986	949	911	871	831	788	744	698	648	596	538	470
	00-00	1162	1130	1098	1066	1033	999	965	929	893	855	816	775	733	681

					To	емперат	гура ок	ружаюі	щего во	здуха, і	трад. С				
Марка провода	Географическая широта, ° с. ш.	-20 и ниже	-15	-10	-5	0	5	10	15	20	25	30	35	40	45
•	•			Длител	ьно дог	іустимі	ый ток	ВЛ, А/	Аварий	іно доп	устимы	ій ток Е	ВЛ, А		•
	40-50	1042	1007	972	935	897	859	818	776	733	687	638	585	528	460
	40-30	1146	1115	1083	1051	1019	985	951	916	880	843	804	764	721	670
AC-240/39	50-60	1043	1008	972	936	898	859	819	777	734	688	639	586	529	462
AC-240/39	30-00	1147	1116	1084	1052	1019	986	952	917	881	844	805	765	722	671
	60-80	1044	1009	974	937	899	861	821	779	735	689	641	588	531	464
	00-80	1148	1117	1085	1053	1020	987	953	918	882	845	806	766	724	673
	40-50	1065	1029	993	955	917	877	836	793	748	701	651	597	539	474
	40-30	1171	1140	1107	1074	1041	1007	972	936	899	861	821	780	737	691
AC-240/56	50-60	1066	1030	993	956	917	878	837	794	749	702	652	598	540	475
AC-240/30	30-00	1172	1140	1108	1075	1042	1008	973	937	900	862	822	781	738	692
	60-80	1067	1031	995	957	919	879	838	796	751	704	654	601	542	478
	00-80	1173	1141	1109	1076	1043	1009	974	938	901	863	824	783	739	694
	40-50	1219	1178	1136	1093	1049	1003	956	907	856	801	744	682	615	540
	40-30	1341	1305	1268	1230	1192	1153	1113	1071	1029	985	940	893	843	791
AC-300/39	50-60	1220	1179	1137	1094	1050	1004	957	908	857	803	745	684	616	542
AC-300/39	30-00	1342	1305	1268	1231	1193	1153	1113	1072	1030	986	941	894	844	792
	60-80	1221	1180	1138	1095	1051	1006	959	910	859	805	747	686	619	545
	00-80	1343	1307	1270	1232	1194	1155	1115	1074	1032	988	943	895	846	794
	40-50	1215	1174	1132	1089	1045	1000	953	904	852	799	741	680	613	538
	40-30	1337	1300	1263	1226	1188	1149	1109	1068	1025	982	937	889	840	788
AC-300/48	50-60	1215	1174	1133	1090	1046	1001	954	905	854	800	742	681	614	540
AC-300/40	30-00	1337	1301	1264	1226	1188	1149	1109	1068	1026	983	938	890	841	789
	60-80	1217	1176	1134	1091	1048	1002	955	907	856	802	745	684	617	543
	00-00	1338	1302	1265	1228	1190	1151	1111	1070	1028	984	939	892	843	791
	40-50	1204	1163	1122	1079	1036	991	944	896	845	791	734	673	607	533
AC-300/66	40-30	1325	1289	1252	1215	1177	1139	1099	1058	1016	973	928	882	832	781
AC-300/00	50-60	1205	1164	1123	1080	1037	992	945	897	846	792	736	675	608	535
	30-00	1326	1290	1253	1216	1178	1139	1100	1059	1017	974	929	882	833	782

Температура окружающего воздуха, град. С															
Марка провода	Географическая широта, ° с. ш.	-20 и ниже	-15	-10	-5	0	5	10	15	20	25	30	35	40	45
•				Длител	ьно дог	іустимі	ый ток	ВЛ, А/	Аварий	іно допу	устимы	й ток В	ЗЛ, А		
	60-80	1206	1166	1124	1082	1038	993	947	898	848	795	738	677	611	538
	00-80	1327	1291	1254	1217	1179	1141	1101	1061	1019	976	931	884	835	784
	40-50	1302	1258	1213	1167	1120	1071	1021	968	913	856	794	728	656	576
	40-30	1433	1394	1354	1314	1273	1231	1189	1145	1099	1052	1004	953	900	844
AC-330/27	50-60	1303	1259	1214	1168	1121	1072	1022	969	915	857	795	730	658	578
AC-330/21	30-00	1434	1395	1355	1315	1274	1232	1189	1145	1100	1053	1005	954	901	845
	60-80	1304	1261	1216	1170	1123	1074	1024	971	917	859	798	732	661	581
		1435	1396	1356	1316	1275	1234	1191	1147	1102	1055	1007	956	903	848
	40-50	1447	1399	1349	1297	1245	1190	1134	1076	1014	950	881	808	728	638
		1594	1550	1506	1461	1416	1369	1322	1273	1222	1170	1116	1059	1000	938
AC-400/22	50-60	1448	1399	1350	1298	1246	1192	1135	1077	1016	951	883	809	729	640
AC-400/22		1595	1551	1507	1462	1417	1370	1322	1273	1223	1171	1117	1061	1001	939
	60-80	1450	1401	1351	1300	1248	1194	1138	1079	1018	954	886	812	733	644
	00-80	1596	1553	1509	1464	1418	1372	1324	1275	1225	1173	1119	1063	1004	942
	40-50	1465	1416	1365	1313	1260	1205	1148	1089	1027	961	892	817	736	645
		1614	1570	1525	1480	1434	1386	1338	1288	1237	1184	1130	1072	1012	949
AC-400/51	50-60	1466	1417	1366	1314	1261	1206	1149	1090	1028	963	893	819	738	647
AC-400/31		1615	1571	1526	1481	1435	1387	1339	1289	1238	1185	1131	1074	1014	950
	60-80	1468	1419	1368	1316	1263	1208	1151	1092	1030	965	896	822	741	651
	00-00	1616	1572	1528	1482	1436	1389	1341	1291	1240	1188	1133	1076	1016	953
	40-50	1469	1420	1369	1317	1263	1208	1151	1092	1029	964	894	819	737	646
	40-30	1619	1574	1530	1484	1438	1390	1342	1292	1241	1188	1133	1075	1015	952
AC-400/64	50-60	1470	1421	1370	1318	1264	1209	1152	1093	1031	965	896	821	739	649
110-400/04	30-00	1619	1575	1530	1485	1438	1391	1343	1293	1242	1189	1134	1076	1016	953
	60-80	1472	1422	1372	1320	1266	1211	1154	1095	1033	968	898	824	743	653
	00-00	1621	1577	1532	1486	1440	1393	1344	1295	1244	1191	1136	1079	1019	955
AC-500/27	40-50	1666	1609	1552	1493	1432	1369	1304	1237	1166	1091	1012	927	834	731
AC-300/27	70-30	1836	1786	1735	1683	1630	1576	1521	1465	1406	1346	1284	1219	1150	1078

		Температура окружающего воздуха, град. С													
Марка провода	Географическая широта, ° с. ш.	-20 и ниже	-15	-10	-5	0	5	10	15	20	25	30	35	40	45
				Длител	ьно дог	іустимі	ый ток	ВЛ, А/	Аварий	но допу	устимы	й ток В	Л, А		
	50-60	1667	1611	1553	1494	1433	1370	1306	1238	1167	1093	1014	929	836	733
	30-00	1837	1786	1736	1684	1631	1577	1522	1466	1408	1348	1285	1220	1152	1080
	60-80	1669	1613	1555	1496	1435	1373	1308	1241	1170	1096	1017	933	840	738
	00-00	1838	1788	1737	1686	1633	1579	1524	1468	1410	1350	1288	1223	1154	1083
	40-50	1705	1647	1588	1527	1465	1401	1334	1265	1193	1116	1035	948	852	746
	40-30	1879	1828	1776	1723	1669	1614	1557	1499	1440	1378	1314	1247	1177	1103
AC-500/64	50-60	1706	1648	1589	1529	1466	1402	1336	1267	1194	1118	1037	950	855	749
AC-300/04		1880	1829	1777	1724	1670	1615	1558	1500	1441	1379	1315	1248	1178	1105
	60-80	1708	1650	1591	1531	1469	1405	1338	1269	1197	1121	1040	953	859	754
		1882	1831	1779	1726	1672	1617	1560	1503	1443	1382	1318	1251	1181	1108
	40-50	1907	1842	1775	1708	1638	1566	1491	1413	1332	1246	1155	1057	950	831
		2103	2045	1987	1927	1867	1805	1742	1677	1610	1541	1469	1394	1315	1232
AC-600/72	50-60	1908	1843	1777	1709	1639	1567	1493	1415	1334	1248	1157	1060	953	834
AC-000/12	30-00	2104	2046	1988	1929	1868	1806	1743	1678	1611	1542	1470	1396	1317	1234
	60-80	1910	1846	1779	1712	1642	1570	1496	1418	1337	1252	1161	1064	958	839
		2106	2049	1990	1931	1870	1809	1746	1681	1614	1545	1473	1399	1320	1238
	40-50	2145	2072	1997	1921	1842	1760	1676	1589	1497	1400	1297	1187	1066	931
		2368	2303	2237	2170	2101	2032	1960	1887	1811	1733	1652	1568	1479	1385
AC-700/86	50-60	2147	2074	1999	1922	1843	1762	1678	1591	1499	1402	1300	1189	1069	934
AC-700/80	30-00	2369	2304	2238	2171	2103	2033	1962	1888	1813	1735	1654	1570	1481	1387
	60-80	2149	2076	2002	1925	1847	1766	1682	1594	1503	1407	1304	1194	1074	940
	00-00	2371	2306	2240	2173	2105	2036	1964	1891	1816	1738	1657	1573	1485	1391
	40-50	440	427	413	398	384	368	352	335	318	299	279	258	234	209
	40-30	481	469	457	445	432	419	405	391	377	362	346	330	313	295
A-70	50-60	440	427	413	399	384	368	352	336	318	299	279	258	235	209
Λ-/U	50-00	481	469	457	445	432	419	406	392	377	362	347	330	313	295
	60-80	441	427	413	399	384	369	353	336	318	300	280	259	236	210
	00-00	482	470	458	445	433	419	406	392	378	363	347	331	314	296

					To	емперат	гура ок	ружаюі	щего во	здуха, і	град. С				
Марка провода	Географическая широта, ° с. ш.	-20 и ниже	-15	-10	-5	0	5	10	15	20	25	30	35	40	45
•		Длительно допустимый ток ВЛ, A/ Аварийно допустимый ток ВЛ, A													
	40.50	530	514	497	480	462	443	424	403	382	359	335	309	281	250
	40-50	580	566	551	536	521	505	489	472	454	436	417	397	377	355
A-95	50-60	531	514	497	480	462	443	424	404	382	360	336	310	282	250
A-93	30-00	580	566	551	536	521	505	489	472	455	436	418	398	377	355
	60-80	531	515	498	481	463	444	425	404	383	360	336	311	283	251
	00-80	581	566	552	537	521	506	489	473	455	437	418	398	378	356
	40-50	618	599	579	559	538	516	493	469	444	418	390	359	326	289
	40-30	677	660	643	625	607	589	570	550	530	508	486	463	439	413
A-120	50-60	618	599	580	559	538	516	494	470	445	418	390	360	327	290
A-120		677	660	643	626	608	589	570	550	530	509	487	464	439	413
	60-80	619	600	580	560	539	517	494	471	446	419	391	361	328	291
		678	661	644	626	608	590	571	551	531	510	487	464	440	414
	40-50	736	712	687	653	628	603	576	548	519	487	454	418	379	336
	40-30	808	786	764	731	710	689	666	643	619	594	568	541	512	482
A-150	50-60	737	712	687	653	629	603	576	549	519	488	455	419	380	337
A-130		808	786	764	732	711	689	667	644	620	595	569	542	513	483
	60-80	737	713	688	654	630	604	577	550	520	489	456	420	382	338
		809	787	765	733	711	690	667	644	620	596	570	543	514	484
	40-50	847	819	790	760	730	699	659	627	593	557	519	478	433	382
	40-30	930	905	879	854	827	800	763	736	709	680	650	619	586	551
A-185	50-60	848	819	791	761	731	699	659	627	593	558	520	479	434	384
A-103	30-00	930	905	880	854	828	801	764	737	709	681	651	620	587	552
	60-80	849	820	791	762	732	700	660	628	595	559	521	480	435	386
	00-80	931	906	881	855	828	802	764	738	710	682	652	621	588	553
	40-50	1018	983	949	913	876	838	799	759	716	671	617	568	513	453
A-240	40-30	1118	1088	1057	1026	994	962	928	894	859	823	776	738	699	657
A-240	50-60	1018	984	949	914	877	839	800	759	717	672	618	569	515	454
	50-00	1119	1088	1058	1026	995	962	929	895	860	823	777	739	700	658

		Температура окружающего воздуха, град. С														
Марка провода	Географическая широта, ° с. ш.	-20 и ниже	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	
		Длительно допустимый ток ВЛ, А/ Аварийно допустимый ток ВЛ, А														
	60-80	1019	985	950	915	878	841	801	761	718	674	620	571	517	457	
		1120	1089	1059	1027	996	963	930	896	861	825	778	741	701	659	
	40-50	1159	1120	1080	1040	998	954	910	863	814	763	709	650	587	516	
	40-30	1275	1240	1205	1169	1133	1096	1058	1019	979	937	894	849	802	752	
A-300	50-60	1160	1121	1081	1040	998	955	911	864	815	764	710	651	588	517	
A-300	30-00	1275	1241	1205	1170	1133	1096	1058	1019	979	938	895	850	803	753	
	60-80	1161	1122	1082	1042	1000	957	912	866	817	766	712	654	590	520	
		1276	1242	1207	1171	1135	1098	1060	1021	981	939	896	852	805	755	
	40-50	1418	1370	1321	1271	1219	1166	1111	1054	994	931	864	792	714	626	
		1561	1518	1475	1431	1386	1341	1294	1246	1197	1146	1093	1038	980	919	
A-400	50-60	1419	1371	1322	1272	1220	1167	1112	1055	995	932	865	794	715	628	
A-400	30-00	1561	1519	1476	1432	1387	1342	1295	1247	1198	1147	1094	1039	981	920	
	60-80	1420	1372	1324	1274	1222	1169	1114	1057	998	935	868	797	719	632	
		1563	1520	1477	1433	1389	1343	1297	1249	1200	1149	1096	1041	983	922	
	40-50	1702	1644	1585	1525	1463	1399	1333	1264	1191	1115	1034	947	853	747	
		1875	1824	1772	1719	1665	1610	1554	1496	1437	1375	1312	1245	1175	1102	
A-500	50-60	1703	1645	1586	1526	1464	1400	1334	1265	1193	1117	1036	949	855	749	
A-300	30-00	1876	1825	1773	1720	1666	1612	1555	1498	1438	1377	1313	1246	1177	1103	
	60-80	1705	1647	1589	1528	1466	1403	1337	1268	1196	1120	1039	953	859	754	
	00-00	1878	1827	1775	1722	1668	1614	1557	1500	1440	1379	1315	1249	1180	1106	
	40-50	1905	1841	1774	1707	1637	1565	1491	1413	1332	1247	1156	1058	952	833	
	40 30	2101	2043	1985	1925	1865	1803	1740	1675	1609	1540	1468	1393	1315	1232	
A-600	50-60	1907	1842	1776	1708	1638	1567	1492	1415	1334	1249	1158	1060	954	836	
11-000	30-00	2102	2044	1986	1927	1866	1805	1742	1677	1610	1541	1470	1395	1317	1234	
	60-80	1909	1844	1778	1711	1641	1570	1495	1418	1337	1252	1162	1065	959	841	
	00-00	2104	2046	1988	1929	1869	1807	1744	1679	1613	1544	1472	1398	1320	1237	

Приложение И

Форма представления результатов расчета допустимых токовых нагрузок ВЛ с учетом ограничений по оборудованию ПС

	кое пие (ачи	ганц	ие ЗВЛ)	а, Бное Овода, шины	Длительно допустимый ток при град. C, A Аварийно допустимый ток при град. C, A													
№ п/п	Диспетчерское наименование электропередач	Наименование подстанции/стані ии	Оборудование чейки ВЛ (КВЛ)	Марка, минимальное сечение провода ошиновки, шинь	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	Ограничивающий элемент ДДТН и АДТН
	Ди над	На подс	Об	МР Сеч6 ОШИ				Te	емперат	ура окру	жающе	го возду:	ха, град.	C				
1	2	3	4	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20
			Провод	3xAC-	2825	2825	2825	2825	2716	2628	2519	2431	2300	2190	2059	1927	1774	
		провод		330/43	2825	2825	2825	2825	2716	2628	2519	2431	2300	2190	2059	1927	1774	
		Кабельный участок		_			_	_		_	_	_	_				_	
						_	_	-	_	_	_	-	_	_	_	_	_	п пти.
			ошиновка	ПА-640	3424	3309	3192	3072	2949	2822	2690	2554	2411	2261	2101	1930	1744	ДДТН:
					3768	3665	3562	3457	3350	3241	3129	3014	2896	2774	2647	2515	2377	Провод,
		K	шины	ПА-640	2167	2167	2167	2167	2083	2016	1932	1865	1764	1680	1579	1478	1361	Ошиновки ПА-640 ПС 500 кВ
	Елецкая			2167	2167	2167	2167	2083	2016	1932	1865	1764	1680	1579	1478	1361	Елецкая, Шины ПС 500 кВ Елецкая,	
		выключатель		2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Выключатель ПС 500 кВ	
			2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Новобрянская,		
	ева 1С 500 раз	разъединит	ель	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Выключатель ПС 500 кВ Елецкая, Заградитель ПС 500 кВ	
				2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Новобрянская,	
			заградител	ІЬ	2000	2000 2000	2000	2000 2000	2000	2000	2000 2000	2000 2000	2000	2000 2000	2000	2000 2000	<u>2000</u> 2000	Заградитель ПС 500 кВ Елецкая.
	обрянская				2000 2000	2000	2000 2000	2000	2000 2000	2000 2000	2000	2000	2000 2000	2000	<u>2000</u> <u>2000</u>	2000	2000	
1	бря		трансформато	трансформатор тока		2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	
	0.08				<u>2400</u> 3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	
	B He		ошиновка	2xAΠ-500	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	АДТН:
	500кВ	<u> </u>			3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	· · · · · · · · · · · · · · · · · · ·
		янская	шины	2xAΠ-500	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	Провод, Ошиновки ПА-640 ПС 500 кВ
	ВЛ				2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000] — Ошиновки ПА-040 ПС 300 кВ Елецкая,
		Новобр	выключате	ель	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Шины ПС 500 кВ Елецкая,
					2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Выключатель ПС 500 кВ Новобрянская,
		кВ	разъединит	ель	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	<u>повоорянская,</u> Выключатель ПС 500 кВ Елецкая,
		500			2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Заградитель ПС 500 кВ
		ПС	заградител	ТЬ	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	Новобрянская, Заградитель ПС 500 кВ Елецкая.
		. ,	_		2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	заградитель тте это ко елецкая.
			трансформато	р тока	2000	2000	2000	2000	2000	2000	2000	2000	2000	<u>2000</u>	2000	2000	2000	
				2000	2000	2000	2000	2000	2000	1932	1865	1764	1680	1579	1478	1361		
	ВЛ 500кВ Новобрянская-Елецкая				2000	2000	2000	2000	2000	2000	1932	1865	1764	1680	1579	1478	1361	

Примечания.

- 1. Ограничивающий элемент по проводу и кабельному участку обозначается полужирным начертанием значения ДДТН и АДТН.
- 2. Ограничивающий элемент по шинам и ошиновкам обозначается курсивным начертанием значения ДДТН и АДТН.
- 3. Ограничивающий элемент по подстанционному оборудованию обозначается подчеркнутым значением ДДТН и АДТН.

Библиография

- 1. Правила устройства электроустановок (ПУЭ). Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны (Издание шестое). Приказ Минэнерго СССР от 10.12.1979.
- 2. Правила устройства электроустановок (ПУЭ). Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ (Издание седьмое). Приказ Минэнерго России от 20.05.2003 № 187.
- 3. Термическая устойчивость проводов воздушных линий. (Thermal state of overhead line conductors. CIGRE, ELECTRA № 12, 1988.
- 4. СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01-99 (с Изменениями № 1 2).
- 5. Расчет температуры проводов воздушных линий электропередачи СВН на основе метода критериального планирования эксперимента. (Зарудский Г.К., Зиннер Л.Э., Сыромятников С.Ю.), Вестник МЭИ № 12, 1997.
- 6. Основы механической части воздушных линий электропередачи. (Глазунов А.А.), Госэнергоиздат, 1956.
- 7. Некоторые вопросы расчета механической части воздушных линий. (Розанов Г.М.), Госэнергоиздат, 1954.
- 8. Проектирование механической части воздушных линий сверхвысокого напряжения. (Зеличенко А.С., Смирнов Б.И.), Энергоиздат, 1981.
- 9. Механический расчет проводов и тросов линий электропередачи. (Бошнякович А.Д.), Энергия, 1971.